
Chapter 12
Tweedie GLMs

. . . we cannot know if any statistical technique that we
develop is useful unless we use it.
Box [5, p. 792]

12.1 Introduction and Overview

This chapter introduces glms based on Tweedie edms. Tweedie edms are
distributions that generalize many of the edms already seen (the normal,
Poisson, gamma and inverse Gaussian distributions are special cases) and
include other distributions also. First, Tweedie edms are discussed in general
(Sect. 12.2), and then two subsets of the Tweedie glms which are impor-
tant are studied: Tweedie edms for modelling positive continuous data for
which gamma and inverse Gaussian glms are special cases (Sect. 12.2.3), then
Tweedie edms for modelling continuous data with exact zeros (Sect. 12.2.4).
We then follow with a description of how to use these Tweedie edms to fit
Tweedie glms (Sect. 12.3).

12.2 The Tweedie EDMs

12.2.1 Introducing Tweedie Distributions

Apart from the binomial and negative binomial distributions, the edms seen
so far in this book have variance functions with similar forms:
• the normal distribution, where V (μ) = μ0 = 1 (Chaps. 2 and 3);
• the Poisson distribution, where V (μ) = μ1 (Chap. 10);
• the gamma distribution, where V (μ) = μ2 (Chap. 11);
• the inverse Gaussian distribution, where V (μ) = μ3 (Chap. 11).

These edms have power variance functions of the form V (μ) = μξ, with
ξ = 0, 1, 2, 3. More generally, any edm with a variance function V (μ) = μξ is
called a Tweedie distribution, or a Tweedie edm, where ξ can take any real
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Table 12.1 Features of the Tweedie distributions for various values of the index param-
eter ξ, showing the support S (the permissible values of y) and the domain Ω for μ. The
Poisson distribution (ξ = 1 and φ = 1) is a special case of the discrete distributions, and
the inverse Gaussian distribution (ξ = 3) is a special case of positive stable distributions.
R refers to the real line; superscript + means positive real values only; subscript 0 means
zero is included in the space (Sect. 12.2.1)

Tweedie edm ξ S Ω Reference

Extreme stable ξ < 0 R R
+ Not covered

Normal ξ = 0 R R Chaps. 2 and 3
No edms exist 0 < ξ < 1
Discrete ξ = 1 y = 0, φ, 2φ, . . . R

+ Chap. 10 for φ = 1
Poisson-gamma 1 < ξ < 2 R

+
0 R

+ Sect. 12.2.3
Gamma ξ = 2 R

+
R

+ Chap. 11
Positive stable ξ > 2 R

+
R

+ Sect. 12.2.4

value except 0 < ξ < 1 [25]. ξ is called the Tweedie index parameter and is
sometimes denoted by p. This power-variance relationship has been observed
in natural populations for many years [36, 37]. Useful information about the
Tweedie distribution appears in Table 5.1 (p. 221).

The four specific cases of Tweedie distributions listed above show that the
Tweedie distributions are useful for a variety of data types (Table 12.1). More
generally:

• For ξ ≤ 0, the Tweedie distributions are suitable for modelling continuous
data where −∞ < y < ∞. The normal distribution (ξ = 0) is a special
case. When ξ < 0, the Tweedie distributions have the unusual feature
that data y are defined on the entire real line, but μ > 0. These Tweedie
distributions with ξ < 0 have no known realistic applications, and so are
not considered further.

• For ξ = 1 the Tweedie distributions are suitable for modelling discrete
data where y = 0, φ, 2φ, 3φ, . . . . When φ = 2, for example, a positive
probability exists for y = 0, 2, 4, . . . . The Poisson distribution is a special
case when φ = 1.

• For 1 < ξ < 2, the Tweedie distributions are suitable for modelling
positive continuous data with exact zeros. An example is rainfall mod-
elling [12, 31]: when no rain falls, an exact zero is recorded, but when
rain does fall, the amount is a continuous measurement. Plots of example
probability functions are shown in Fig. 12.1. As ξ → 1, the densities show
local maxima corresponding to the discrete masses for the corresponding
Poisson distribution.

• For ξ ≥ 2, the Tweedie distributions are suitable for modelling positive
continuous data. The gamma (ξ = 2) and inverse Gaussian (ξ = 3)
distributions are special cases (Chap. 11). The distributions become more
right skewed as ξ increases (Fig. 12.2).
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Fig. 12.1 Examples of Tweedie probability functions with 1 < ξ < 2 and μ = 1. The
solid lines correspond to φ = 0.5 and the dotted lines to φ = 1. The filled dots show the
probability of exactly zero when φ = 0.5 and the empty squares show the probability of
exactly zero when φ = 1 (Sect. 12.2.1)
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Fig. 12.2 Examples of Tweedie probability functions with ξ > 2 and μ = 1. As ξ gets
larger, the distributions become more skewed to the right. The solid lines correspond to
φ = 0.5; the dotted lines to φ = 1 (Sect. 12.2.1)

ξ is called the Tweedie index parameter for the Tweedie distributions, and
specifies the particular distribution in the Tweedie family of distributions.
The two cases 1 < ξ < 2 and ξ ≥ 2 are considered in this chapter in further
detail. (The special cases ξ = 0, 1, 2, 3 were considered earlier.)
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12.2.2 The Structure of Tweedie EDMs

Tweedie distributions are defined as edms with variance function V (μ) = μξ

for some given ξ. Using this relationship, θ and κ(θ) can be determined (fol-
lowing the ideas in Sect. 5.3.6). Setting the arbitrary constants of integration
to zero, obtain (Problem 12.1)

θ =

⎧
⎪⎨

⎪⎩

μ1−ξ

1 − ξ
for ξ �= 1

log μ for ξ = 1
and κ(θ) =

⎧
⎪⎨

⎪⎩

μ2−ξ

2 − ξ
for ξ �= 2

log μ for ξ = 2
. (12.1)

Other parameterizations are obtained by setting the constants of integration
to other values. One useful parameterization ensures θ and κ(θ) are con-
tinuous functions of ξ [16] (Problem 12.2). The expressions for θ and κ(θ)
contain ξ, so the Tweedie distributions are only edms if ξ is known. In prac-
tice, the value of ξ is usually estimated (Sect. 12.3.2). If y follows a Tweedie
distribution with index parameter ξ, mean μ and dispersion parameter φ,
write y ∼ Twξ(μ, φ).

Based on these expressions for θ and κ(θ), the Tweedie probability function
may be written in canonical form (5.1). Apart from the special cases identified
earlier (the normal, Poisson, gamma and inverse Gaussian distributions), the
normalizing constant a(y, φ) cannot be written in closed form. Consequently,
accurate evaluation of the probability function for Tweedie edms in general
requires numerical methods [15, 16].

The unit deviance is (Problem 12.3)

d(y, μ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
{

max(y, 0)2−ξ

(1 − ξ)(2 − ξ) − yμ1−ξ

1 − ξ
+ μ2−ξ

2 − ξ

}

for ξ �= 1, 2;

2
{

y log y

μ
− (y − μ)

}

for ξ = 1;

2
(

− log y

μ
+ y − μ

μ

)

for ξ = 2.

(12.2)

When y = 0, the unit deviance is finite for ξ ≤ 0 and 1 < ξ < 2. (Recall
y = 0 is only admitted for ξ ≤ 0 and 1 < ξ < 2; see Table 12.1.)

The Tweedie probability function can be written in the form of a dispersion
model (5.13) also, using the unit deviance (12.2). In this form, the normalizing
constant b(y, φ) cannot be written in closed form, apart from the four special
cases. By the saddlepoint approximation, D(y, μ̂) ∼ χ2

n−p′ approximately for
a model with p′ parameters in the linear predictor. The saddlepoint approx-
imation is adequate if φ ≤ min{y}2−ξ/3 for the cases ξ ≥ 1 considered in
this chapter (Prob. 12.4). One consequence of this is that the approximation
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is likely to be poor if any y = 0 (when 1 < ξ < 2). Also, recall that ξ = 3
corresponds to the inverse Gaussian distribution, for which the saddlepoint
approximation is exact.

Of interest is the Tweedie rescaling identity [16]. Writing Pξ(y; μ, φ) for
the probability function of a Tweedie edm with index parameter ξ, then

Pξ(y; μ, φ) = cPξ(cy; cμ, c2−ξφ) (12.3)

for all ξ, where y > 0 and c > 0.

12.2.3 Tweedie EDMs for Positive Continuous Data

In most situations, positive continuous responses are adequately modelled
using a gamma or inverse Gaussian distribution (Chap. 11). In some circum-
stances, neither is adequate, especially for severely skewed data. However,
all edms with variance functions of the form μξ for ξ ≥ 2 are suitable for
positive continuous data. The gamma (ξ = 2) and inverse Gaussian (ξ = 3)
distributions are just two special cases, and are the only examples of Tweedie
edms with ξ ≥ 2 with probability functions that can be written in closed
form. One important example corresponds to V (μ) = μ4, which is approxi-
mately equivalent to using the transformation 1/y as the response variable
in a linear regression model.
Example 12.1. The survival times (in 10 h units) of animals subjected to three
types of poison were measured [6] for four different treatments (Table 12.2;
data set: poison). Four animals were used for each poison–treatment combi-
nation (Fig. 12.3, top panels):
> data(poison); summary(poison)

Psn Trmt Time
I :16 A:12 Min. :0.1800
II :16 B:12 1st Qu.:0.3000
III:16 C:12 Median :0.4000

D:12 Mean :0.4794
3rd Qu.:0.6225
Max. :1.2400

Table 12.2 Survival times (in 10 h units) for animals under four treatments A, B, C
and D, and three poison types I, II and III (Example 12.1)

Poison I Poison II Poison III

A B C D A B C D A B C D

0.31 0.82 0.43 0.45 0.36 0.92 0.44 0.56 0.22 0.30 0.23 0.30
0.45 1.10 0.45 0.71 0.29 0.61 0.35 1.02 0.21 0.37 0.25 0.36
0.46 0.88 0.63 0.66 0.40 0.49 0.31 0.71 0.18 0.38 0.24 0.31
0.43 0.72 0.76 0.62 0.23 1.24 0.40 0.38 0.23 0.29 0.22 0.33
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Fig. 12.3 The poison data. The time to death plotted against poison type (top left
panel); the time to death plotted against treatment type (top right panel); the mean of
the time to death by poison type and treatment type (bottom left panel); the logarithm
of each treatment–poison group variance plotted against the logarithm of the group
means (bottom right panel) (Example 12.1)

> plot( Time ~ Psn, xlab="Poison type", las=1, data=poison )
> plot( Time ~ Trmt, xlab="Treatment type", las=1, data=poison )
> GroupMeans <- tapply(poison$Time, list(poison$Psn, poison$Trmt), "mean")
> matplot( GroupMeans, type="b", xlab="Poison type", ylab="Mean time",

pch=1:4, col="black", lty=1:4, lwd=2, ylim=c(0, 1.3), axes=FALSE)
> axis(side=1, at=1:3, labels=levels(poison$Psn))
> axis(side=2, las=1); box()
> legend("topright", lwd=2, lty=1:4, ncol=2, pch=1:4,

legend=c("T'ment A", "T'ment B", "T'ment C", "T'ment D"))

Finding the variance and the mean of the four observations in each poison–
treatment combination and plotting (Fig. 12.3, bottom right panel) shows
that the variance is a function of the mean:
> # Find mean and var of each poison/treatment combination
> mns <- tapply(poison$Time, list(poison$Psn, poison$Trmt), mean)
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> vrs <- tapply(poison$Time, list(poison$Psn, poison$Trmt), var)
> # Plot
> plot( log(c(vrs)) ~ log(c(mns)), las=1, pch=19,

xlab="log(sample means)", ylab="log(sample variances)")
> mvline <- lm( log( c(vrs) ) ~ log( c(mns) ) )
> slope <- round( coef( mvline )[2], 2); abline( mvline, lwd=2)
> slope
log(c(mns))

3.95

The slope of this line is 3.95, suggesting a Tweedie edm with ξ ≈ 4 may be
appropriate. 	


12.2.4 Tweedie EDMs for Positive Continuous Data
with Exact Zeros

Tweedie edms with 1 < ξ < 2 are useful for modelling continuous data with
exact zeros. An example of this type of data is insurance claims data [26,
34]. Assume N claims are made in a particular company in a certain time
frame, where N ∼ Pois(λ∗) where λ∗ is the Poisson mean number of claims
in the time frame. Observe that N could be zero if no claims are made.
When N > 0, assume the amount of each claim i = 1, . . . , N is zi, where
zi must be positive. Assume zi follows a gamma distribution with mean μ∗

and dispersion parameter φ∗, so that zi ∼ Gam(μ∗, φ∗). The total insurance
payout y is the sum of the N individual claims, such that

y =
N∑

i=1
zi,

where y = 0 when N = 0. The total claim amount y has a Tweedie distri-
bution with 1 < ξ < 2. In this interpretation, y is a Poisson sum of gamma
distributions, and hence these Tweedie distributions with 1 < ξ < 2 are some-
times called Poisson–gamma distributions [31], though this term sometimes
has another, but related, meaning [17].

Example 12.2. The Quilpie rainfall data were considered in Example 4.6 (data
set: quilpie), where the probability of observing at least 10 mm of total
July rainfall was the quantity of interest. In this example, we examine the
total July rainfall in Quilpie. Observe that the total monthly July rainfall is
continuous, with exact zeros:
> library(GLMsData); data(quilpie)
> head(quilpie)

Year Rain SOI Phase Exceed y
1 1921 38.4 2.7 2 Yes 1
2 1922 0.0 2.0 5 No 0
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3 1923 0.0 -10.7 3 No 0
4 1924 24.4 6.9 2 Yes 1
5 1925 0.0 -12.5 3 No 0
6 1926 9.1 -1.0 4 No 0
> sum( quilpie$Rain==0 ) # How many months with exactly zero rainfall?
[1] 20

For these data, a Tweedie distribution with 1 < ξ < 2 may be appropriate.
The monthly rainfall could be considered as a Poisson sum of rainfall events
each July, with each event producing rainfall amounts that follow a gamma
distribution. 	


The parameters of the fitted Tweedie edm defined in Sect. 12.2.2, namely
μ, φ and ξ, are related to the parameters of the underlying Poisson and
gamma distributions by

λ∗ = μ2−ξ

φ(2 − ξ) ;

μ∗ = (2 − ξ)φμξ−1; (12.4)
φ∗ = (2 − ξ)(ξ − 1)φ2μ2(ξ−1).

Tweedie edms with 1 < ξ < 2 are continuous for y > 0, but have a positive
probability π0 at y = 0, where [15]

π0 = Pr(y = 0) = exp(−λ∗) = exp
{

− μ2−ξ

φ(2 − ξ)

}

. (12.5)

To compute the mle of π0, the mles of μ, ξ and φ must be used in (12.5)
(see the first property of mles in Sect. 4.9). The mles of μ, ξ and φ can be
computed in r as shown in Sect. 12.3.2.

After computing the mles of μ, φ and ξ, the mles of λ∗, μ∗ and φ∗ can be
computed using (12.4). These estimates give an approximate interpretation
of the model based on the underlying Poisson and gamma models [7, 12, 15],
and may sometimes be useful (see Sect. 12.7).

12.3 Tweedie GLMs

12.3.1 Introduction

Glms based on the Tweedie distributions are Tweedie glms, specified as
glm(Tweedie, ξ; Link function). For both cases considered in this chapter
(that is, ξ > 2 and 1 < ξ < 2), we have μ > 0 (Table 12.1). As a result, the
usual link function used for Tweedie glms is the logarithmic link function.
The dispersion parameter φ is usually estimated using the Pearson estimate
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(though the mle of φ is necessary for computing the mle of the probability
of exact zeros when 1 < ξ < 2, as explained in Sect. 12.2.4).

To fit Tweedie glms, the particular distribution in the Tweedie family must
be specified by defining the value of ξ, but usually the value of ξ is unknown
and must be estimated before the Tweedie glm is fitted (Sect. 12.3.2). The
correlation between ξ̂ and β̂ is small, so using the estimate ξ̂ has only a small
effect on inference concerning β compared to knowing the true value of ξ.

Linear regression models using a Box–Cox transformation of the responses
can be viewed as an approximation to the Tweedie glm with the same under-
lying mean–variance relationship (Problem 12.7); see Sect. 5.8 (p. 232) and
Table 5.2. In terms of inference, the normal approximation to the Box–Cox
transformed responses can be quite poor when the responses cover a wide
range, especially when the responses include exact zeros or near zeros. As a
result, the Tweedie glm approach can often give superior results.

12.3.2 Estimation of the Index Parameter ξ

As noted, fitting a Tweedie glm requires that the value of the index pa-
rameter ξ be known, which identifies the specific Tweedie edm to use. Since
Tweedie distributions are defined as edms with var[y] = φV (μ) = φμξ, then
log(var[y]) = log φ + ξ log μ. This shows that a simplistic method for esti-
mating ξ is to divide the data into a small number of groups, and plot the
logarithm of the group variances against the logarithm of the group means,
as used in Example 12.1 and Example 5.9 (the noisy miner data). However,
the estimate of ξ may depend upon how the data are divided.

Note that if exact zeros are present in the data, then 1 < ξ < 2. However,
if the data contains no exact zeros, then ξ ≥ 2 is common but 1 < ξ < 2
is still possible. In this situation, one interpretation is that exact zeros are
feasible but simply not observed in the given data (Example 12.7).

Example 12.3. For the Quilpie rainfall data (data set: quilpie), the mean and
variance of the monthly July rainfall amounts can be computed within each
soi phase, and the slope computed. An alternative approach is to compute
the mean and variance of the rainfall amounts within each decade:
> # Group by SOI Phase
> mn <- with( quilpie, tapply( Rain, Phase, "mean"))
> vr <- with( quilpie, tapply( Rain, Phase, "var"))
> coef( lm( log(vr) ~ log(mn) ) )
(Intercept) log(mn)

1.399527 1.553380
> # Group by Decade
> Decade <- cut( quilpie$Year, breaks=seq(1920, 1990, by=10) )
> mn <- tapply( quilpie$Rain, Decade, "mean")
> vr <- tapply( quilpie$Rain, Decade, "var")
> coef( lm( log(vr) ~ log(mn) ) )
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(Intercept) log(mn)
0.2821267 1.9459524

The two methods produce different estimates of ξ, but both satisfy 1 ≤ ξ ≤ 2.
	


A more rigorous method for estimating ξ, that uses the information in the
explanatory variables and is not dependent on the arbitrary dividing of the
data, is to compute the maximum likelihood estimator of ξ. A convenient way
to organize the calculations is via the profile likelihood for ξ. Various values
of ξ are chosen, then the Tweedie glm is fitted for each value of ξ assuming
that ξ is fixed, and the log-likelihood computed at each value of ξ. This
gives the profile log-likelihood. The value of ξ giving the largest profile log-
likelihood is the profile likelihood estimate. A plot of the profile log-likelihood
against various values of ξ is often useful.

One difficulty with this method is that the likelihood function for the
Tweedie edms must be computed, but the probability function for Tweedie
edms does not have a closed form (Sect. 12.2.2) except in the well-known
special cases. However, numerical methods exist for accurately evaluating the
Tweedie densities [15, 16], and are used in the r function tweedie.profile()
(in package tweedie [13]) for computing the profile likelihood estimate of ξ.
The use of tweedie.profile() is demonstrated in Example 12.4, and briefly
in Example 12.5. Sometimes, estimating ξ using tweedie.profile() may be
slow, but once the estimate of ξ has been determined fitting the Tweedie glm
using glm() is fast (as computing the value of the likelihood is not needed
for estimation).

Example 12.4. The total monthly July rainfall at Quilpie, considered in Ex-
ample 12.2 (data set: quilpie), is continuous but has exact zeros. Following
the conclusion in Sect. 4.12 (p. 202), we consider modelling the total July
rainfall as a function of the soi phase [35]. The soi phase is clearly of some
importance (Fig. 12.4, left panel):
> quilpie$Phase <- factor(quilpie$Phase) # Declare Phase as a factor
> plot( Rain ~ Phase, data=quilpie, ylab="Total July rainfall",

ylim=c(0, 100), las=1)

Also observe that the variation is greater for larger average rainfall amounts.
A suitable estimate of ξ can be found using tweedie.profile():
> library(tweedie)
> out <- tweedie.profile( Rain ~ Phase, do.plot=TRUE, data=quilpie)

The profile likelihood plot (Fig. 12.4, right panel) shows the likelihood is
computed at a small number of ξ values as filled circles, then a smooth curve
is drawn through these points. The horizontal dashed line is the value of
the log-likelihood at which the approximate 95% confidence interval for ξ is
located, using that, approximately,
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Fig. 12.4 The total July rainfall at Quilpie plotted against soi phase (left panel), and
the profile likelihood plot for estimating ξ (right panel) (Example 12.4)

2
{


(ξ̂; y; φ̂, μ̂) − 
(ξ; y; φ̂ξ, μ̂ξ)
}

∼ χ2
1,

where 
(ξ; y; φ̂ξ, μ̂ξ) is the profile log-likelihood at ξ and 
(ξ̂; y; φ̂, μ̂) is the
overall maximum.

The output object, named out in the above, contains a lot of information
(see names(out)), including the estimate of ξ (as xi.max), the nominal 95%
confidence interval for ξ (as ci), and the mle of φ (as phi.max):
> # The index parameter, xi
> xi.est <- out$xi.max
> c( "MLE of xi" = xi.est, "CI for xi" = out$ci )
MLE of xi CI for xi1 CI for xi2
1.371429 1.270144 1.499132

> # Phi
> c("MLE of phi"=out$phi.max)
MLE of phi

5.558709

	

A technical difficulty sometimes arises in estimating ξ, which has been

observed by many authors [20, 23, 26]. Recall (Sect. 12.2) that the Tweedie
distribution with ξ = 1 is suitable for modelling discrete data where y =
0, φ, 2φ, 3φ, . . . . If the responses y are rounded to, say, one decimal place, then
the log-likelihood may be maximized by setting φ = 0.1 and ξ = 1. Likewise,
if the data are rounded to zero decimal places, then the log-likelihood may
be maximized setting φ = 1 and ξ = 1 (Example 12.5). Dunn and Smyth [15]
discuss this problem in greater detail. In practice, the profile likelihood plot
produced by tweedie.profile() should be examined, and values of ξ near
1 should be avoided as necessary.

Example 12.5. Consider 100 observations randomly generated from a Tweedie
distribution with ξ = 1.5, μ = 2 and φ = 0.5.
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> mu <- 2; phi <- 0.5; xi <- 1.5; n <- 100
> library(tweedie)
> rndm <- rtweedie(n, xi=xi, mu=mu, phi=phi)

We then estimate the value of ξ from the original data, and then after round-
ing to one and to zero decimal places (Fig. 12.5):
> xi.vec <- seq(1.01, 1.75, by=0.05)
> out.est <- tweedie.profile( rndm ~ 1, xi.vec=xi.vec)
> out.1 <- tweedie.profile( round(rndm, 1) ~ 1, xi.vec=xi.vec)
> out.0 <- tweedie.profile( round(rndm, 0) ~ 1, xi.vec=xi.vec)

Now compare the estimates of ξ and φ for the three cases:
> xi.max <- out.est$xi.max
> xi.1 <- out.1$xi.max
> xi.0 <- out.0$xi.max
> compare <- array( dim=c(2, 4))
> colnames(compare) <- c("True", "Estimate", "One d.p.", "Zero d.p.")
> rownames(compare) <- c("xi", "phi")
> compare[1,] <- c(xi, xi.max, xi.1, xi.0)
> compare[2,] <- c(phi, out.est$phi.max, out.1$phi.max, out.0$phi.max)
> round(compare, 3)

True Estimate One d.p. Zero d.p.
xi 1.5 1.696 1.710 1.010
phi 0.5 0.411 0.407 1.003

For these data, rounding to one decimal place only makes a small difference
to the log-likelihood, and to the estimate of ξ. However, rounding to zero
decimal places produces an artificial maximum in the log-likelihood, where
ξ → 1 and φ → 1. 	
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Fig. 12.5 Estimating ξ for some randomly generated data from a Tweedie distribution
with ξ = 1.5. The gray vertical line is the true value of ξ (Example 12.5)
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12.3.3 Fitting Tweedie GLMs

Once an estimate of ξ has been obtained, the Tweedie glm can be fitted
in r using the usual glm() function. The Tweedie distributions are denoted
in r using family=tweedie() in the glm() call, after loading the statmod
package. The call to family=tweedie() must specify which Tweedie edm is
to be used (that is, the value of ξ), using the input var.power; for example,
family=tweedie(var.power=3) indicates the Tweedie edm with V (μ) = μ3

should be used. The link function is specified using the input link.power,
where η = μlink.power. Usually, link.power=0 which corresponds to the loga-
rithmic link function. The logarithm link function is the most commonly-used
link function with Tweedie glms. As usual, the default link function is the
canonical link function.

Once the model has been fitted, quantile residuals [14] are recommended
for diagnostic analysis, especially when 1 < ξ < 2 when exact zeros may be
present. Using more than one set of quantile residuals is recommended, due
to the randomization used at y = 0 (Sect. 8.3.4.2).

Example 12.6. For the Quilpie rainfall data (data set: quilpie), the estimate
of ξ found in Example 12.4 is ξ ≈ 1.37. To fit this model in r:
> xi.est <- round(xi.est, 2); xi.est
[1] 1.37
> m.quilpie <- glm( Rain ~ Phase, data=quilpie,

family=tweedie(var.power=xi.est, link.power=0) )
> printCoefmat(coef(summary(m.quilpie)))

Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.1691 1.9560 -1.1089 0.271682
Phase2 5.6923 1.9678 2.8927 0.005239 **
Phase3 3.5153 2.0600 1.7064 0.092854 .
Phase4 5.0269 1.9729 2.5480 0.013287 *
Phase5 4.6468 1.9734 2.3547 0.021665 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We can compare the Pearson, deviance and quantile residuals (Fig. 12.6):
> dres <- resid(m.quilpie) # The default residual
> pres <- resid(m.quilpie, type="pearson")
> qres1 <- qresid(m.quilpie) # Quantile resids, replication 1
> qres2 <- qresid(m.quilpie) # Quantile resids, replication 2
> qqnorm(dres, main="Deviance residuals", las=1); qqline(dres)
> qqnorm(pres, main="Pearson residuals", las=1); qqline(pres)
> qqnorm(qres1, main="Quantile residuals (set 1)", las=1); qqline(qres1)
> qqnorm(qres2, main="Quantile residuals (set 2)", las=1); qqline(qres2)

Compare the Q–Q plot of the deviance, Pearson and quantile residuals
(Fig. 12.6): the exact zeros appear as bands in the bottom left corner when
using the deviance residuals. When the data contain a large number of exact
zeros, this feature makes the plots of the deviance residuals hard to read.
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Fig. 12.6 Q–Q plots for the Pearson, deviance and quantile residuals for the Tweedie
glm fitted to the Quilpie rainfall data. Two realization of the quantile residuals are
shown (Example 12.6)

The quantile residuals use a small amount of randomization (Sect. 8.3.4.2) to
remove these bands. The Q–Q plot of the quantile residuals for these data
suggest the model is adequate. Q–Q plots of the other residuals make it
difficult to draw definitive conclusions. For this reason, the use of quantile
residuals is strongly recommended for use with Tweedie glms with 1 < ξ < 2.

Other model diagnostics (Fig. 12.7) also suggest the model is reasonable:
> plot( qres1 ~ fitted(m.quilpie), las=1,

xlab="Fitted values", ylab="Quantile residuals" )
> plot( cooks.distance(m.quilpie), type="h", las=1,

ylab="Cook's distance, D")
> plot( qresid(m.quilpie) ~ factor(quilpie$Phase), las=1,

xlab="Phase", ylab="Quantile residuals" )
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Fig. 12.7 The diagnostics for the Tweedie glm fitted to the Quilpie rainfall data (Ex-
amples 12.6 and 12.7)

No observations are identified as influential using Cook’s distance, though
dffits identifies one observation as influential and cv identifies eight:
> q.inf <- influence.measures(m.quilpie)
> colSums(q.inf$is.inf)

dfb.1_ dfb.Phs2 dfb.Phs3 dfb.Phs4 dfb.Phs5 dffit cov.r cook.d
0 0 0 0 0 1 8 0

hat
0

	

As shown in Sect. 12.2.4, Tweedie glms with 1 < ξ < 2 can be developed

as a Poisson sum of gamma distributions. A fitted glm can be interpreted
on this basis too.

Example 12.7. For the Quilpie rainfall data (data set: quilpie), the predicted
number of zero-rainfall months π̂0 for each soi phase can be compared to the
actual proportion of months in the data with zero rainfall for each soi phase.

To find the mle of π0 using (12.5), the mle of φ must be used, which was
conveniently returned by tweedie.profile() as phi.max (Example 12.4).
The plot of the expected probability of a zero against the proportion of zeros
in the data for each soi phase is shown in Fig. 12.7 (bottom right panel):
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> # Modelled probability of P(Y=0)
> new.phase <- factor( c(1, 2, 3, 4, 5) )
> mu.phase <- predict(m.quilpie, newdata=data.frame(Phase=new.phase),

type="response")
> names(mu.phase) <- paste("Phase", 1:5)
> mu.phase

Phase 1 Phase 2 Phase 3 Phase 4 Phase 5
0.1142857 33.8937500 3.8428573 17.4235294 11.9142857

> phi.mle <- out$phi.max
> pi0 <- exp( -mu.phase^(2 - xi.est) / (phi.mle * (2 - xi.est) ) )
> #
> # Observed probability of P(Y=0)
> prop0 <- tapply(quilpie$Rain, quilpie$Phase,

function(x){sum(x==0)/length(x)})
> #
> plot( pi0 ~ prop0, xlab="Proportion of zeros in data", ylim=c(0, 1),

ylab="Expected prob. of zero rainfall", las=1 )
> abline(0, 1, lwd=2) # The line of equality
> text(prop0, pi0, # Adds labels to the points

labels=paste("Phase", levels(quilpie$Phase)),
pos=c(2, 4, 1, 4, 3)) # These position the labels; see ?text

The proportion of months with zero rainfall are predicted with reasonable
accuracy. The Tweedie glm seems a useful model for the total July rainfall
in Quilpie.

As suggested in Sect. 12.2.4 (p. 463), the estimated parameters of the glm
can be used to interpret the underlying Poisson and gamma distributions. To
do so, use the tweedie.convert() function in package tweedie:
> out <- tweedie.convert(xi=xi.est, mu=mu.phase, phi=phi.mle)
> downscale <- rbind("Poisson mean" = out$poisson.lambda,

"Gamma mean" = out$gamma.mean,
"Gamma dispersion" = out$gamma.phi)

> colnames(downscale) <- paste("Phase", 1:5)
> downscale

Phase 1 Phase 2 Phase 3 Phase 4 Phase 5
Poisson mean 0.07281493 2.628215 0.6668339 1.728229 1.3602174
Gamma mean 0.16582834 1.362530 0.6088689 1.065178 0.9254371
Gamma dispersion 1.44678583 97.673944 19.5044793 59.694036 45.0588947

In the context of rainfall modelling, this interpretation in terms of λ∗, μ∗

and φ∗ is a form of statistical downscaling [11]. The estimates of the Poisson
mean λ∗ show the mean number of rainfall events in July when the soi
is in each phase, and the estimates of the gamma mean μ∗ give the mean
amount of rainfall in each rainfall event for each soi phase. For Phase 2 the
model predicts a mean of 2.628 rainfall events occur in July, with a mean of
1.363 mm in each. The mean monthly July rainfall predicted by the model
agrees with the observed mean rainfall in the data:
> tapply( quilpie$Rain, quilpie$Phase, "mean") # Mean rainfall from data

1 2 3 4 5
0.1142857 33.8937500 3.8428571 17.4235294 11.9142857
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> mu.phase # Mean rainfall from model
Phase 1 Phase 2 Phase 3 Phase 4 Phase 5

0.1142857 33.8937500 3.8428573 17.4235294 11.9142857

(Note that the boxplots in Fig. 12.4 show the median rainfall, not the mean.)
The estimates of μ∗ and φ∗ are the mean and dispersion parameters for the
gamma distribution fitted to the total July rainfall amount for each soi phase.

Notice that 1 < ξ < 2 since exact zeros are present in the data. However,
exact zeros are not present in every soi Phase:
> tapply(quilpie$Rain, quilpie$Phase, "min")

1 2 3 4 5
0.0 3.6 0.0 0.0 0.0

In other words, even though no months with exactly zero rainfall were ob-
served during Phase 2, the Tweedie glm assigns a (small) probability that
such an event could occur:
> round(out$p0, 2)
[1] 0.93 0.07 0.51 0.18 0.26

	


12.4 Case Studies

12.4.1 Case Study 1

A study of performance degradation of electrical insulation from accelerated
tests [28, 29, 32] measured the dialetric breakdown strength (in kilovolts) for
eight time periods (in weeks) and four temperatures (in degrees Celsius). Four
measurements are given for each time–temperature combination (data set:
breakdown), and the study can be considered as a 8×4 factorial experiment.

> data(breakdown)
> breakdown$Time <- factor(breakdown$Time)
> breakdown$Temperature <- factor(breakdown$Temperature)
> summary(breakdown)

Strength Time Temperature
Min. : 1.00 1 :16 180:32
1st Qu.:10.00 2 :16 225:32
Median :12.00 4 :16 250:32
Mean :11.24 8 :16 275:32
3rd Qu.:13.53 16 :16
Max. :18.50 32 :16

(Other):32
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Fig. 12.8 A plot of the dialetric breakdown data (Sect. 12.4.1)

A plot of the data (Fig. 12.8) may suggest that a temperature of 275◦C is
different than the rest:
> bd.means <- with(breakdown,

tapply(Strength, list(Time, Temperature), "mean"))
> matplot( bd.means, type="b", col="black",

pch=1:4, lty=1:4, las=1, ylim=c(0, 20),
xlab="Time", ylab="Mean strength (kV)", axes=FALSE)

> axis(side=1, at=1:8, labels=levels(breakdown$Time))
> axis(side=2, las=2); box()
> legend("bottomleft", pch=1:4, lty=1:4, merge=FALSE,

legend=levels(breakdown$Temperature), title="Temperature" )

The plot also seems to show that the variance increases as Time increases.
To consider fitting a Tweedie glm to the data, we use tweedie.profile()
to find an estimate of ξ:

> bd.xi <- tweedie.profile(Strength~Time*Temperature, data=breakdown,
do.plot=TRUE, xi.vec=seq(1.2, 2, length=11))

> bd.m <- glm( Strength~factor(Time) * factor(Temperature), data=breakdown,
family=tweedie(link.power=0, var.power=bd.xi$xi.max))

> anova(bd.m, test="F")

Notice that 1 < ξ < 2 even though all breakdown strengths are positive:
> bd.xi$xi.max
[1] 1.591837

The Q–Q plot (Fig. 12.9, right panel) suggests no major problems with the
model:
> qqnorm( resid(bd.m), las=1 ); qqline( resid(bd.m) )
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Fig. 12.9 The profile-likelihood plot (left panel) and Q–Q plot of quantile residuals
(right panel) for the dialetric breakdown data (Sect. 12.4.1)
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Fig. 12.10 The profile likelihood plot for estimating the value of the Tweedie index
parameter ξ for the poison data (Sect. 12.4.2)

12.4.2 Case Study 2

Consider the survival times data first introduced in Example 12.1, where
a Tweedie edm with ξ ≈ 4 was suggested for modelling the data (data
set: poison). To find the appropriate Tweedie edm for modelling the data
more formally, initially determine an estimate of ξ using the profile likeli-
hood (Fig. 12.10), using the r function tweedie.profile() from the package
tweedie:

> data(poison)
> library(tweedie) # To provide tweedie.profile()
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> pn.profile <- tweedie.profile( Time ~ Trmt * Psn, data=poison,
do.plot=TRUE)

.......Done.
> c("xi: MLE"=pn.profile$xi.max, "xi: CI"=pn.profile$ci)
xi: MLE xi: CI1 xi: CI2

3.826531 2.866799 NA

These results suggest that fitting a Tweedie glm using ξ̂ = 4 is not unrea-
sonable:
> library(statmod) # To provide the tweedie() family
> poison.m1 <- glm( Time ~ Trmt * Psn, data=poison,

family=tweedie(link.power=0, var.power=4))
> anova( poison.m1, test="F")

Df Deviance Resid. Df Resid. Dev F Pr(>F)
NULL 47 62.239
Trmt 3 19.620 44 42.619 32.7270 2.189e-10 ***
Psn 2 32.221 42 10.398 80.6195 5.053e-14 ***
Trmt:Psn 6 2.198 36 8.199 1.8334 0.12
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The interaction is not significant. The fitted model without the interaction
term is:
> poison.m2 <- update( poison.m1, . ~ Trmt + Psn )
> summary(poison.m2)
Call:
glm(formula = Time ~ Trmt + Psn, family = tweedie(link.power = 0,

var.power = 4), data = poison)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.29925 -0.32135 -0.03321 0.20951 0.94121

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.82828 0.07938 -10.435 3.10e-13 ***
TrmtB 0.61792 0.08812 7.012 1.40e-08 ***
TrmtC 0.15104 0.06414 2.355 0.0233 *
TrmtD 0.49832 0.08053 6.188 2.13e-07 ***
PsnII -0.22622 0.09295 -2.434 0.0193 *
PsnIII -0.77091 0.08007 -9.628 3.43e-12 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for Tweedie family taken to be 0.2656028)

Null deviance: 62.239 on 47 degrees of freedom
Residual deviance: 10.398 on 42 degrees of freedom
AIC: NA

Number of Fisher Scoring iterations: 8
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Fig. 12.11 The diagnostics for the final model poison.m2 fitted to the poison data
(Sect. 12.4.2)

Notice the aic is not computed by default, because the necessary numerical
computations may be time consuming. However, the aic can be computed
explicitly using the function AICtweedie() in package tweedie, suggesting
the non-interaction model is preferred:
> c("With int" = AICtweedie(poison.m1),

"Without int." = AICtweedie(poison.m2))
With int Without int.

-87.57423 -88.32050

The diagnostic plots suggest model poison.m2 is adequate (Fig. 12.11),
though the residuals for Poison 2 are more variable than for other poisons:
> plot( qresid(poison.m2) ~ poison$Psn, las=1,

xlab="Poison", ylab="Quantile residuals" )
> plot( qresid(poison.m2) ~ poison$Trmt, las=1,

xlab="Time", ylab="Quantile residuals" )
> plot( qresid(poison.m2) ~ fitted(poison.m2), las=1,

xlab="Fitted values", ylab="Quantile residuals" )
> plot( cooks.distance(poison.m2), type="h", las=1,

ylab="Cook's distance, D")
> qqnorm( qr<-qresid(poison.m2), las=1 ); qqline(qr)

The final model is glm(Tweedie, ξ = 4; log):
{

y ∼ Twξ=4(μ̂, φ̄ = 0.2656) (random)
log E[y] = log μ̂ = β̂0 + β̂1x1 + β̂2x2 + β̂3x3 + β̂4x4 + β̂5x5 (systematic)
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where the xj represent dummy variables for the treatment type (j = 1, 2, 3)
and poison type (j = 4, 5). Observe the Pearson estimate of φ is given in the
output of summary(poisson.m2) as φ̄ = 0.2656.

These data have also been analysed [6] using the Box–Cox transformation
λ = −1, corresponding to y∗ = 1/y. This transformation is the variance-
stabilizing transformation approximating the Tweedie glm with ξ = 4 (Ta-
ble 5.2).

12.5 Using R to Fit Tweedie GLMs

Fitting Tweedie glms require extra r libraries to be installed (Sect. A.2.5):

• The tweedie package [13] is useful for estimating the appropriate value
of ξ for a given data set using the function tweedie.profile().

• The statmod package [33] is essential for fitting Tweedie glms, provid-
ing the tweedie() glm family function. It also provides the function
qresid() for computing quantile residuals, whose use is strongly recom-
mended with Tweedie glms.

The tweedie.profile() function fixes the value of ξ and fits the Tweedie
glm, then computes the log-likelihood. After doing so for various values of
ξ, the profile likelihood estimate of ξ is the value producing the largest value
of the log-likelihood. The function may be slow for very large data sets.

The use of tweedie.profile() requires a formula for specifying the sys-
tematic component in the same form as used for glm(). Other important
inputs are:

• xi.vec: The vector of ξ-values to consider. By default, if the response con-
tains zeros then xi.vec = seq(1.2, 1.8, by=0.1), and if the response
does not contain zeros then xi.vec = seq(1.5, 5, by=0.5). The likeli-
hood function is smoothed by default (unless do.smooth=FALSE) through
the likelihood values computed at these values of ξ given in xi.vec.

• do.plot: Indicates whether to produce a plot of the log-likelihood against
ξ, called a profile likelihood plot. Producing the plot is recommended
to ensure the function has worked correctly and to ensure the problem
identified in Sect. 12.3.2 has not occurred. If the plot is not smooth, the
method may need to be changed. The log-likelihood is evaluated numer-
ically at the values of ξ in xi.vec, and these evaluations shown with
a filled circle in the profile likelihood plot if do.plot=TRUE (by default,
do.plot=FALSE). An interpolation spline is drawn if do.smooth=TRUE
(the default).

• method: The method used for numerically computing the log-likelihood.
Occasionally the method needs to be changed explicitly to avoid difficul-
ties (errors messages may appear; the log-likelihood may be computed as
±∞ (shown as Inf or -Inf in r); or the plot of the log-likelihood against
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ξ is not smooth). The options include method = "series", method =
"inversion", or method = "interpolation". The series method [15]
often works well when the inversion method fails [16]. The interpolation
method uses either the series or an interpolation of the inversion method
results, so is often faster but may produce discontinuities in the profile
likelihood plot when the computations change regimes.

• do.ci: Produces a nominal 95% confidence interval for the mle of ξ when
do.ci=TRUE (which is the default).

The function tweedie.profile() returns numerous quantities, the most use-
ful of which are:

• xi.max: The profile likelihood estimate of ξ.
• phi.max: The mle of φ.
• ci: The limits of the approximate 95% confidence interval for ξ (returned

if do.ci=TRUE, which is the default).

See ?tweedie.profile for further information.
After installing the statmod package, specify a Tweedie glm in r us-

ing glm(formula, family=tweedie(var.power, link.power)), where the
value of ξ is var.power, and link.power specifies the link function in the
form μlink.power = η. Most commonly, link.power is zero, specifying the
logarithmic link function. (The default link function is the canonical link
function; Problem 12.5.) The aic is not computed and shown in the model
summary(), because the computations may be slow. If necessary, the aic can
be computed directly using AICtweedie() in package tweedie.

12.6 Summary

Chapter 12 focuses on fitting Tweedie glms to two types of data: Tweedie
glms for positive continuous data, and Tweedie glms for positive continuous
data with exact zeros.

The Tweedie distributions are edms with the variance function V (μ) = μξ,
for ξ /∈ (0, 1) (Sect. 12.2). Special cases of Tweedie distributions previously
studied are the normal (ξ = 0), Poisson (ξ = 1 and φ = 1), gamma (ξ = 2)
and inverse Gaussian (ξ = 3) distributions (Sect. 12.2).

The unit deviance is given in (12.2). The residual deviance D(y, μ̂) is
suitably described by a χ2

n−p′ distribution if φ ≤ y2−ξ/3, but is exact when
ξ = 3 (the inverse Gaussian distribution) (Sect. 12.2.2).

For ξ ≥ 2, the Tweedie distributions, and hence Tweedie glms, are appro-
priate for positive continuous data. For 1 < ξ < 2, the Tweedie distributions,
and hence Tweedie glms, are appropriate for positive continuous data with
exact zeros (Sect. 12.2).

The value of ξ is estimated using the tweedie.profile() function from
the r package tweedie (Sect. 12.3).
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Problems

Selected solutions begin on p. 547.

12.1. Deduce the expressions for θ and κ(θ) for the Tweedie edms, as given
in (12.1) (p. 460), using that V (μ) = μξ. Set the arbitrary constants of
integration to zero. (Hint: Follow the approach in Sect. 5.3.6, p. 217.)

12.2. In Problem 12.1, expressions for θ and κ(θ) were found by setting the
arbitrary constants of integration to zero. In this problem we consider an
alternative parameterization [15].

1. By appropriately choosing the constants of integration, show that alter-
native expressions for θ and κ(θ) can be written as

θ =

⎧
⎪⎪⎨

⎪⎪⎩

μ1−ξ − 1
1 − ξ

for ξ �= 1

log μ for ξ = 1

and κ(θ) =

⎧
⎪⎪⎨

⎪⎪⎩

μ2−ξ − 1
2 − ξ

for ξ �= 2

log μ for ξ = 2

(12.6)

2. Show that θ is continuous in ξ. (Hint: Use that limα→0(xα − 1)/α →
log x.)

3. Likewise, show that κ(θ) is continuous in ξ.

12.3. Deduce the unit deviance for the Tweedie edms given in (12.2) (p. 460).

12.4. Using the guideline presented in Sect. 5.4.5 (p. 226), show that the
residual deviance D(y, μ̂) is likely to follow a χ2

n−p′ distribution when φ ≤
y2−ξ/3 when ξ ≥ 1. Hence show that the saddlepoint approximation is likely
to be poor for continuous data with exact zeros.

12.5. Deduce the canonical link function for the Tweedie edms.

12.6. Consider the rescaling identity in (12.3).

1. Using this identity, deduce the Tweedie edm for which the value of φ
does not change when a change of measurement units (say, from grams
to kilograms) is applied to the data y.

2. Using this identity, deduce the Tweedie edm for which value of φ increases
by the same factor as that used for a change of measurement units in the
data y.

3. What does the identity reveal about the case of the inverse Gaussian
distribution in the case of a change in measurement units in y?

4. Show that the probability function for any Tweedie edm Pξ(y; μ, φ) can
be computed by an evaluation at μ = 1 (that is, Pξ(y∗; 1, φ∗)), by finding
the appropriately-redefined values of y∗ and φ∗.

12.7. Consider the Box–Cox transformation (Sect. 3.9, p. 116).
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1. Show that the Box–Cox transformation for any λ approximates fitting a
glm based on a edm with variance function V (μ) = μ2(1−λ) if μ > 0.
(Use a Taylor series of the transformation expanded about the mean μ,
as in Sect. 5.8.)

2. No Tweedie edms exist when 0 < ξ < 1. Use this result to show no
equivalent power-variance glm exists for the Box–Cox transformations
corresponding to 0.5 < λ < 1.

12.8. A study of monthly rainfall in Australia [22] fitted Tweedie glms to a
number of different rainfall stations using ξ̂ = 1.6. For Bidyadanga monthly
rainfall from 1912 to 2007, the fitted systematic component was

log μ̂m = 2.903 + 1.908 sin(2πm/12) + 0.724 cos(2πm/12),

where m = 1, 2, . . . 12 corresponds to the month of the year (for example,
February corresponds to m = 2). The standard errors for the parameter
estimates are (respectively) 0.066, 0.090 and 0.085, and the mle of φ is 8.33.

1. Compute the Wald statistic for testing if each regression parameter is
zero.

2. Plot the value of μ̂m against m for m = 1, . . . , 12 for Bidyadanga.
3. Plot the predicted value of π0 against m for m = 1, . . . , 12 for Bidyadanga.

12.9. A study [10] of the walking habits of adults living in south-east
Queensland, Australia, compared different types of Statistical Areas classi-
fied by their walk score [9] as ‘Highly walkable’, ‘Somewhat walkable’, ‘Car-
dependent’ or ‘Very car-dependent’ (Table 12.3). The Tweedie glm was fitted
using ξ̂ = 1.5.

1. Explain the differences between the predicted mean walking times in
both sections of the table. Why are the predicted means all larger for the
second model (‘walking adults’)?

2. A Tweedie glm was fitted for ‘All adults’ and a gamma glm for ‘Walking
adults’. Explain why these models may have been chosen.

3. The deviance from the fitted Tweedie glm was 5976.08 on 1242 degrees
of freedom. Use this information to find an estimate of φ.

4. Using the Tweedie glm, find an estimate of the proportion of all adults
who did no walking in each of the four types of walkability descriptions,
and comment. Why are these values not the mles of the π0?

12.10. A study of polythene use by cosmetic companies in the uk [19]
hypothesized a relationship with company turnover (Table 12.4; data set:
polythene). Consider two Tweedie glms models for the data, both using
a logarithmic link function for the systematic component: the first using
Polythene~Turnover, and the second using Polythene~log(Turnover).

1. Find estimates of ξ for each model.
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Table 12.3 Predicted mean number of minutes of walking per day in four types of
regions, adjusted for work status, household car ownership and driver’s license status
(Problem 12.9)

All adults Walking adults

Predicted Predicted
n mean n mean

Highly walkable 214 7.5 155 25.5
Somewhat walkable 407 4.7 255 25.4

Car-dependent 441 2.9 254 21.2
Very car-dependent 187 2.5 90 18.3

Table 12.4 The company turnover and polythene use for 23 cosmetic companies in the
uk (to preserve confidentiality, the data were scaled) (Problem 12.10)

Polythene use Turnover Polythene use Turnover Polythene use Turnover
(in tonnes) (in £00 000) (in tonnes) (in £00 000) (in tonnes) (in £00 000)

0.04 0.02 31.50 9.85 587.83 83.94
1.60 0.23 472.50 21.13 1068.92 106.13
0.00 3.17 0.00 24.40 676.20 156.01
0.00 3.46 94.50 30.18 1056.30 206.43
3.78 3.55 55.94 40.13 1503.60 240.51

29.40 4.62 266.53 68.40 1438.50 240.93
8.00 5.71 252.53 70.88 2547.30 371.68

95.13 7.77 4298.70 391.33

2. Fit the glms to the data, and interpret the models.
3. On two separate plots of polythene use against turnover, plot the system-

atic components of both models, including the 95% confidence interval
for the fitted lines. Comment on the models.

4. Compute the aic for both models, and comment.
5. Produce the appropriate diagnostic plots for both models.
6. Deduce a suitable model for the data.

12.11. Consider the permeability of building material data given in Ta-
ble 11.2 (data set: perm). In Sect. 11.7 (p. 440), the positive continuous re-
sponse was modelled using an inverse Gaussian glm for interpretation rea-
sons. Jørgensen [24] also considers a gamma (ξ = 2) glm for the data.

1. Determine an estimate of ξ using tweedie.profile(). What edm is
suggested?

2. Fit a suitable Tweedie glm ensuring an appropriate diagnostic analysis.

12.12. A study of human energy expenditure measured the energy expendi-
ture y of 104 females over a 24-h period (Table 12.5; data set: energy), and
also recorded their fat-tissue mass x1 and non-fat tissue x2 mass [18, 24].
A model for the energy expenditure is E[y] = β1x1 + β2x2, assuming the
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Table 12.5 The energy expenditure and mass of 104 females (units not given). Only
the first six observations are shown (Problem 12.12)

Energy expenditure Mass of fat tissue Mass of non-fat tissue

60.08 17.31 43.22
60.08 34.09 43.74
63.69 33.03 48.72
64.36 9.14 50.96
65.37 30.73 48.67
66.05 20.74 65.31

...
...

...

energy expenditure for each tissue type is homogenous. Since the total mass
is M = x1 + x2, divide by M and rewrite as E[ȳ] = β2 + (β1 − β2)x̄, where
ȳ = y/M is the energy expenditure per unit mass, and x̄ = x1/M is the
proportion of fat-tissue mass.

1. Plot ȳ against x̄ and confirm the approximate linear relationship between
the variables.

2. Use tweedie.profile() to estimate ξ for the data. Which Tweedie edms
is appropriate?

3. Find a suitable glm for the data, ensuring a diagnostic analysis.

12.13. The data described in Table 12.6 (data set: motorins1) concern third
party motor insurance claims in Sweden for the year 1977 [1, 21, 32]. The
description of the data states that Swedish motor insurance companies “ap-
ply identical risk arguments to classify customers, and thus their portfolios
and their claims statistics can be combined” [1, p. 413]. The data set con-
tains 315 observations representing one of the zones in the country (covering
Stockholm, Göteborg, and Malmö with surroundings).

For the remainder of the analysis, consider payments in millions of Kroner.
Policies are categorized by kilometres of travel (five categories), the no-claim
bonus (seven categories) and make of car (nine categories), for a total of 315
categories. Of these, 20 contain exactly zero claims, so the total payout in
those categories is exactly zero; in other categories, the total payout can be
consider continuous. Find an appropriate model for the data. (Hint: You
will need to change the range of ξ values considered by tweedie.profile()
using the xi.vec input.)

Using your fitted model, interpret the model using the parameters of the
underlying Poisson and gamma distributions. (Hint: See (12.4), p. 464.)

12.14. The total monthly August rainfall for Emerald (located in Queens-
land, north eastern Australia) from 1889 to 2002 is shown in Table 12.7 (data
set: emeraldaug) with the monthly average southern oscillation index (soi).
Negative values of the soi often indicate El Niño episodes, which are often
associated with reduced rainfall in eastern and northern Australia [27].
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Table 12.6 A description of the variables used in the Swedish insurance claims data
set (Problem 12.13)

Variable Description

Kilometres: Kilometres travelled per year:
1: Less than 1000
2: 1000–15,000
3: 15,000–20,000
4: 20,000–25,000
5: More than 25,000

Bonus: No claims bonus; the number of years since last claim, plus one
Make: 1–8 represent eight different common car models. All other models are

combined in class 9
Insured: Number of insured in policy-years
Claims: Number of claims

Payment: Total value of payments in Skr (Swedish Kroner)

Table 12.7 The total monthly rainfall in August from 1889–2002 in Emerald, Australia,
plus the monthly average soi and corresponding soi phases. The first five observations
are shown (Problem 12.14)

Year Rain (in mm) soi soi phase

1889 15.4 2.1 5
1890 47.5 −3.1 5
1891 45.7 −8.9 5
1892 0.0 5.9 2
1893 108.7 7.8 2

...
...

...
...

1. Argue that the Poisson–gamma models are appropriate for monthly rain-
fall data, along the lines of the argument in Sect. 12.2.4 (p. 463).

2. Perform a hypothesis test to address the relationship between rainfall and
soi given earlier in the question to see if it applies at Emerald: “Negative
values of the soi. . . are often associated with reduced rainfall in eastern
and northern Australia.”

3. Fit an appropriate edm for modelling the total monthly August rainfall
in Emerald from the soi.

4. Compute the 95% confidence interval for the soi parameter, and deter-
mine the practical importance of soi for August rainfall in Emerald.

5. Fit an appropriate edm for modelling the total monthly August rainfall
in Emerald from the soi phases.

6. Interpret the fitted model using soi phases, using the parameters of the
underlying Poisson and gamma distributions. (Hint: See (12.4), p. 464.)
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Table 12.8 Data from 194 trawls in the South East Fisheries ecosystem regarding the
catch of tiger flathead. Distance is measured north to south on the 100 m depth contour
(Problem 12.15)

Longitude Latitude Depth Distance Swept area Number of Biomass of tiger
of trawl of trawl (in m) (in m) (in ha) tiger flathead flathead (in kg)

149.06 −37.81 −33 91 4.72260 1 0.02
149.08 −37.83 −47 90 5.00040 0 0.00
149.11 −37.87 −74 89 6.11160 153 30.70
149.22 −38.02 −117 88 5.83380 15 7.77
149.27 −38.19 −212 88 3.04222 0 0.00
150.29 −37.41 −168 48 6.11160 25 6.90
150.19 −37.33 −113 48 5.83380 53 15.30

...
...

...
...

...
...

...

12.15. A study on the South East Fisheries ecosystem near Australia [4]
collected data about the number of fish caught from fish trawl surveys. One
analysis of these data [17] studied the number of tiger flathead (Table 12.8;
data set: flathead).

1. The data record the number of flathead caught per trawl plus the to-
tal biomass of the flathead caught. Propose a mechanism for the total
biomass that leads to the Tweedie glm as a possible model (similar to
that used in Sect. 12.2.4).

2. The paper that analysed the data [17] fits a Poisson glm to model the
number of tiger flathead caught. The paper states

. . . the dependence on covariates, if any, is specified using orthogonal polyno-
mials in the linear predictor. The dependency on depth used a second order
polynomial and the dependency on along-coast used a third order polyno-
mial. . . The log of the area swept variable was included as an offset (p. 542).

Explain why area is used as an offset.
3. Based on the information above, fit an appropriate Poisson glm for mod-

elling the number of tiger flathead caught (using Depth and Distance as
covariates, in the manner discussed in the quote above). Show that this
model has large overdispersion, and hence fit a quasi-Poisson model. Pro-
pose a reason why overdispersion is observed.

4. Based on the above information, plot the logarithm of biomass against
the depth and distance, and comment on the relationships.

5. The paper that analysed the biomass data [17] stated that

There is no reason to include an extra spatial dimension. . . as it would be
highly confounded with depth (p. 541).

Determine if any such correlation exists between depth, and the latitude
and longitude.



486 12 Tweedie GLMs

Table 12.9 Feeding rates (in feeds per hour) of chestnut-crowed babblers (Prob-
lem 12.16)

Feeding Observation Chick Non-breeding Brood
rate time (h) Sex age (days) birds ages size

0.000 11.09 M 1 Adult 3
0.000 11.16 M 2 Adult 4
0.000 12.81 M 3 Adult 1
0.238 12.59 M 4 Adult 1
1.316 12.16 M 5 Adult 1
1.041 11.53 M 6 Adult 1

...
...

...
...

...
...

0.321 6.22 F 19 Adult 3
0.000 6.22 M 19 Yearling 3

6. The paper that analysed the biomass data [17] used a Tweedie glm (using
Depth and Distance as covariates, in the manner discussed in the quote
above). Based on the above information, fit a suitable Tweedie glm, and
assess the model using diagnostics.

7. Compare the Q–Q plot of the deviance and quantile residuals from the
Tweedie glm, and comment.

12.16. Chestnut-crowned babblers are medium-sized Australian birds that
live in social groups. A study of their feeding habits [8] recorded, among
other things, the rates at which they fed, in feeds per hour (Table 12.9; data
set: babblers). About 18% of the feeding rates are exact zeros. Fit a Tweedie
glm to the data to model the feeding rates.

12.17. A study comparing two different types of toothbrushes [2, 30] mea-
sured the plaque index for females and males before and after brushing
(Table 12.10; data set: toothbrush). Smaller values mean cleaner teeth. The
26 subjects all used both toothbrushes. One subject received the same plaque
index before and after brushing.

Assuming the plaque index cannot become worse after brushing, fit an
appropriate glm to the data for modelling the difference (Before − After),
and deduce if the toothbrushes appear to differ in their teeth-cleaning ability,
and if this seems related to the sex of the subject.

12.18. An experiment [3] to quantify the effect of ketamine (an anaesthetic)
measured the amount of sleep (in min) for 30 guinea pigs, using five different
doses (Table 12.11; data set: gpsleep).

1. Explain what the exact zeros mean.
2. Plot the data, and show that the variance increases with the mean.
3. Plot the logarithm of the group variances against the logarithm of the

group means, where the groups are defined by the doses. Show this implies
ξ ≈ 1.



12.6 Summary 487

Table 12.10 The plaque index before and after brushing for two types of toothbrushes;
smaller values indicate cleaner teeth (Problem 12.17)

Conventional brush Hugger (new) brush

Females Males Females Males

Before After Before After Before After Before After

1.20 0.75 3.35 1.58 2.18 0.43 0.90 0.15
1.43 0.55 1.50 0.20 2.05 0.08 0.58 0.10
0.68 0.08 4.08 1.88 1.05 0.18 2.50 0.33
1.45 0.75 3.15 2.00 1.95 0.78 2.25 0.33
0.50 0.05 0.90 0.25 0.28 0.03 1.53 0.53
2.75 1.60 1.78 0.18 2.63 0.23 1.43 0.43
1.25 0.65 3.50 0.85 1.50 0.20 3.48 0.65
0.40 0.13 2.50 1.15 0.45 0.00 1.80 0.20
1.18 0.83 2.18 0.93 0.70 0.05 1.50 0.25
1.43 0.58 2.68 1.05 1.30 0.30 2.55 0.15
0.45 0.38 2.73 0.85 1.25 0.33 1.30 0.05
1.60 0.63 3.43 0.88 0.18 0.00 2.65 0.25
0.25 0.25 3.30 0.90
2.98 1.03 1.40 0.24

Table 12.11 Amount of sleep (in min) for 30 guinea pigs after receiving intravenous
doses of ketamine (Problem 12.18)

0.60 mg/kg 1.04 mg/kg 1.44 mg/kg 2.00 mg/kg 2.75 mg/kg

0.00 0.00 0.00 0.00 0.00 3.60 5.59 7.67 0.00 1.71
0.00 0.00 2.85 5.92 8.32 8.50 9.40 9.77 11.15 11.89
3.99 4.78 7.36 10.43 12.73 13.20 10.92 24.80 14.48 14.75

4. Using tweedie.profile(), show that ξ̂ = 1.1. (Hint: Try using xi.vec
= (1.02, 1.4, by=0.02) to ensure you obtain a good estimate of ξ.)

5. Show that a quadratic Tweedie glm in Dose is significantly better than
the Tweedie glm linear is Dose.

6. Also consider the linear and quadratic Tweedie glm using log(Dose) in
place of Dose.

7. Also consider a Tweedie glm using a natural cubic spline, with knots=
quantile(Dose, c(0.33, 0.67))).

8. Plot all five systematic component on a plot of the data, and comment.
9. Use the aic to determine a model from the five considered, and show the

quadratic model in Dose is the preferred model.
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