
Unsupervised Learning: What is a Sports Car?

Simon Rentzmann∗ Mario V. Wüthrich†

Prepared for:

Fachgruppe “Data Science”

Swiss Association of Actuaries SAV

Version of October 9, 2019

Abstract

This tutorial studies unsupervised learning methods. Unsupervised learning methods are

techniques that aim at reducing the dimension of data (covariables, features), cluster cases

with similar features, and graphically illustrate high dimensional data. These techniques

do not consider response variables, but they are solely based on the features themselves

by studying incorporated similarities. For this reason, these methods belong to the field

of unsupervised learning methods. The methods studied in this tutorial comprise principal

components analysis (PCA) and bottleneck neural networks (BNNs) for dimension reduction,

K-means clustering, K-medoids clustering, partitioning around medoids (PAM) algorithm

and clustering with Gaussian mixture models (GMMs) for clustering, and variational au-

toencoder (VAE), t-distributed stochastic neighbor embedding (t-SNE), uniform manifold

approximation and projection (UMAP), self-organizing maps (SOM) and Kohonen maps for

visualizing high dimensional data.

Keywords. principal components analysis (PCA), biplot, autoencoder, bottleneck neural

network (BNN), minimal spanning tree (MST), K-means clustering, K-medoids cluster-

ing, partitioning around medoids (PAM) algorithm, expectation-maximization (EM) algo-

rithm, clustering with Gaussian mixture models (GMMs), variational autoencoder (VAE),

t-distributed stochastic neighbor embedding (t-SNE), model-based clustering, uniform man-

ifold approximation and projection (UMAP), self-organizing maps (SOM), Kohonen map,

multi-dimensional scaling (MDS).

0 Introduction and overview

This data analytics tutorial has been written for the working group “Data Science” of the Swiss

Association of Actuaries SAV, see

https://www.actuarialdatascience.org

We are going to discuss three different types of unsupervised learning methods in this tutorial.

The first type of methods aims at reducing the dimension of the data; the main objective in this

∗AXA Switzerland, simon.rentzmann@axa-winterthur.ch
†RiskLab, Department of Mathematics, ETH Zurich, mario.wuethrich@math.ethz.ch

1

 Electronic copy available at: https://ssrn.com/abstract=3439358

dimension reduction exercise is to minimize the reconstruction error of the original data. The

second type of methods is aiming at categorizing data into clusters of similar cases; the main

objective in this part is the similarity between cases. The third type of methods mainly aims

at visualizing high dimensional data; this is also done by dimension reduction, but the main

objective is to keep the (local) topology of the data as far as possible. Figure 1 gives a schematic

unsupervised learning

dimension reduction clustering low dimensional visualization

PCA BNN K-means K-medoids

GMM

t-SNE UMAP

SOM

Figure 1: Classification of unsupervised learning methods studied in this tutorial.

overview of the structure of this tutorial.

Clustering or cluster analysis is concerned with grouping individual cases that are similar. In

doing so, the portfolio of all cases is partitioned into (sub-)groups of similar cases which leads to

a segmentation of a heterogeneous portfolio into homogeneous sub-portfolios (of similar cases).

Clustering is only based on the covariates (features) of the cases without taking into considera-

tion a potential response variable. For this reason, clustering methods are called unsupervised

learning methods.

Clustering builds homogeneous (sub-)groups which results in a classification of all cases of a

portfolio. Classification can be thought of as an unordered labeling. In insurance we may also

be interested into a more continuous representation of these cases. Continuity is understood in

the sense that we explicitly try to embed high dimensional cases into lower dimensional spaces.

This can be achieved by dimension reduction techniques which reduce high dimensional features

to lower dimensional objects. Such dimension reduction techniques also belong to the family

of unsupervised learning methods if they do not use any information about response variables.

We will present two different types of dimension reduction techniques. The first type aims at

a representation which leads to a minimal reconstruction error w.r.t. the original features, the

second type aims at preserving the original local topology as good as possible for visualization.

Overview. The methods discussed in this tutorial comprise principal components analysis

(PCA), autoencoders and bottleneck neural networks (BNNs) for dimension reduction, K-means

clustering, K-medoids clustering, partitioning around medoids (PAM) algorithm and clustering

with Gaussian mixture models (GMMs) for clustering, and t-distributed stochastic neighbor

embedding (t-SNE), uniform manifold approximation and projection (UMAP), self-organizing

2

 Electronic copy available at: https://ssrn.com/abstract=3439358

maps (SOM) and Kohonen maps for visualization. These methods are applied to a small data

set that we are going to discuss first in the next section.

1 “What is a sports car?”, Ingenbleek–Lemaire (1988)

Our analysis of unsupervised learning methods starts from the article “What is a sports car”

by Ingenbleek–Lemaire [14]. Unfortunately, only part of the original data set of [14] is still

available. Therefore, we have extended this original part of the data with additional cars which

have been compiled from the internet.1 An excerpt of our data is illustrated in Listing 1.2

Listing 1: data of car models

1 ’data.frame ’: 475 obs. of 13 variables:

2 $ brand : Factor w/ 43 levels "Alfa Romeo","Audi ",..: 3 7 7 11 26 29 29 ...

3 $ type : Factor w/ 96 levels "100" ,"1200" ,"200" ,..: 68 93 8 55 27 63 64 ...

4 $ model : Factor w/ 113 levels "1 generation ",..: 73 55 100 32 88 58 62 ...

5 $ cubic_capacity : int 998 652 602 850 1598 845 956 1588 1596 992 ...

6 $ max_power : int 31 25 21 25 41 21 31 40 40 37 ...

7 $ max_torque : num 67 49 39 60 96 56 65 100 100 98 ...

8 $ seats : int 4 5 4 5 5 4 5 5 5 5 ...

9 $ weight : int 620 755 585 680 1015 695 695 900 1030 920 ...

10 $ max_engine_speed: int 5000 5500 5750 5250 4600 4500 5750 4500 4800 4250 ...

11 $ seconds_to_100 : num 19.5 26.2 NA 32.3 21 NA 19.3 18.7 20 NA ...

12 $ top_speed : int 129 125 115 125 143 115 137 148 140 130 ...

13 $ sports_car : int 0 0 0 0 0 0 0 0 0 0 ...

14 $ tau : num 23.3 34.1 28.6 32.8 35 ...

The data comprises the brand, type and model of the cars considered. For each car we have

information about the cubic capacity (in cm3),3 the maximal power of engine (in kW),4 the

maximal torque (in Nm), the number of seats, the weight of the car (in kg), the maximum

engine speed (in rpm), the acceleration from 0 to 100km/h (in seconds), and the top speed

(in km/h), see lines 5-12 of Listing 1. This data is illustrated in Figure 2. We consider the

logarithmized data of the weight, the maximal power, the cubic capacity, the maximal torque,

the maximal engine speed, the seconds to 100km/h and the top speed of the cars. The diagonal

of Figure 2 shows the QQ plots (w.r.t. a Gaussian distribution). We observe that these variables

look fairly Gaussian on the log-scale, only the maximal engine speed MES l seems to be more

skewed. The lower left part of Figure 2 gives the corresponding scatter plots with the resulting

absolute values of correlations provided in the upper right part.

We focus on the continuous variables. The treatment of categorical variables is more difficult

because they do not offer a canonical distance function, we also refer to Section 6, below.

The information of Listing 1 was used in the 1970s in Belgium to discriminate sports cars from

ordinary cars. This discrimination had a direct impact on the prices of insurance policies.5 The

1The additional cars compiled from the internet belong to the same time period as the ones selected from

Ingenbleek–Lemaire [14]. This ensures consistency of the merged data set.
2The data set is available from https://github.com/JSchelldorfer/ActuarialDataScience
31 liter equals 1000cm3.
41 horse power equals 0.735499kW.
5Of course, today, one would directly use this original information in a GLM, a GAM or a neural network

regression model for insurance pricing. However, we revisit this Belgium sports car example because it gives us a

nice show case for illustrating different unsupervised learning methods.

3

 Electronic copy available at: https://ssrn.com/abstract=3439358

●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●
●●●

●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●
●●

W_l

3.5 4.5 5.5

0.83 0.88

4.0 5.0 6.0

0.88 0.18

1.5 2.5 3.5

0.59

6.
4

6.
8

7.
2

0.76
3.

5
4.

5
5.

5

●
●●

●
●

● ●●●
●

●
●

●
●

●
●
●

●

●

● ●

●●
●

●●●
●

●●●
●

●
●

●

● ●●

●
●

●
●

●
●

●● ● ●
●

●●●●
●●●

●
●

● ●

●
●● ●●

●●●●

●●●●●●●●●
●

●●

●

●

●●

●

●
●
●
●●●●
●●

●
●
●
●●●●
●●

●●
●
●
●
●

●
● ●

●●
●●
●●

●●

●
● ●●●

●●
●●●

●
●●
●●

●

●●

●●
●

●●●
●
●

●
●
●
●
●●

●

●

●
●●
●●●●●

●
●
●
●
●●

●
●●● ●

●

●●●●● ●●
●

●●
●●

●●●
●●●
●●

●●
●●

●
●

●●
●●
●
●●

●●●
●●●●
●●

●
●
●
●●
●●

●●
●●
●

●
●
●
●●●

●●●
●
●

●●●
●●●●

●
●

●●●●
●●
●●●

●
●

●
●●●●

●●●
●●●●●●

●●
●●
●

●

●●
●●
●●●●●

●
●●●●●●●●

●
●●

●
●
●
●

●

●
●
●

●

●
●

●
● ●

●
●●

●

●●
●●●
●●●●●

●●●

●●
●●●

●●●●●
●
●●

●

●
●●
●
●●
●●●●

●
●
●●

●
●●●●
●
●
●●●

●●●●●●
●●

●
●●●●●

●
●

●

●
●●
●●●●●

●
●

●
●●
●
●●●

●●
●●●●
●

●
●●●

●

●
●●
●

●

●●

●●
●

●

●●●

●
●

●
●

●

●

●

●●●

●●●●
●●
●●●●
●

●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●
●●●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●
●MP_l

0.86 0.96 0.11 0.90 0.96

●

●
●

●

●

● ●

●
● ●

●
●

●
●

●

●●

●

●

● ●

●●

●

●●●

●

●●
●

●

●

●

●

● ●
●

●

●
●

●
●

●

●

●

●
●

●

●
●

●● ●●●
●

●

● ●

●

●
● ●●

●●
●
●

●●
●

●
●●

●●

●

●

●●
●

●

●

●

●
●●●
●●
●●●●

●●●
●●
●●●●

●●

●●●●
●● ●

●●
●●●●●●

●● ●●●●●●●
●●●●
●●
●

●● ●●●●●●●●

●
●●●●●

●
●●●
●●●●

●● ●●
●●●●

●
●●● ●● ●●●●● ●●

●

●●

●
●

●●●●
●●●●●●●●

●●

●●●
●●●●

●●●●
●●●●●
●●●●●

●●

●●
●●●
●●●●
●●
●

●
●●●

●●●
●
●●●●●

●●●●●●
●●●

●●●●●
●●
●●●●●●●

●●

●●●●
●●

●
●
●●●
●●●●●●●●
●●●●
●●

●●
●
●
●●

●
●●
●

●
●

●
●●

●

●
●●●

●●
●●●●
●●
●●●●●

●
●●●●
●●●●●
●●●

●

●●●●●●●●
●●
●●●●

●●●●●●●●
●●
●●●●●●

●●

●

●●●●
●
●●●

●
●●●●●

●●
●

●

●
●●
●●●

●

●●●●●●
●●●●●

●

●●●
● ●●●●●●●

●●●
●●

●

●
●

●
●

●●●

●●●●
●●●
●
●

●●

●

●
●

●

●

●●

●
●●

●
●

●
●

●

● ●

●

●

●●

●●

●

●●●

●

●●
●

●

●

●

●

●●
●

●

●
●

●
●

●

●

●

●
●

●

●
●
●●●●●

●

●

●●

●

●
●●
●

●●
●
●

●●
●
●
●●
●●

●

●

●●
●

●

●

●

●
●●●
●●
●●●●

●●●
●●
●●●●

●●

●●●●
●●●

●●
●●●●●●

●●●●●●●●●●●●●
●●

●
●● ●●●●●●●●

●
●●●●●

●
●●●

●●●●
●●●●

●●●●
●

●●●● ●●●●●●●●

●

●●

●
●

●●●●
●●●●●●●●

●●

●●●
●●●●

●●●●
●●●●●

●●●●●
●●

●●
●●●
● ●● ●

●●
●
●
●●●

●●●
●
●●● ●●

●●●●●●
●●●
●●●●●
●●

●●●●●●●
●●

●●●●
● ●

●
●

●●●
●●●●●●●●

●●●●
●●
●●

●
●

●●
●

●●
●

●
●

●
●●

●

●
●● ●

●●
●●●●

●●
●● ●●●

●
●●●●

●●●●●
●●●

●

●●●●●●●●
●●

● ●●●

●●●●●●●●
●●
●●●●●●

●●

●

●●●●
●

● ●●

●
●●●●●

●●
●

●

●
●●

●●●
●

●●●●●●
●●●●●

●

●●●
●● ●●●●●●

●●●
●●

●

●
●

●
●

●●●

●●●●
●●●
●
●

●●

● ●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●
●●●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●
CC_l

0.93 0.26 0.69

6.
5

7.
5

8.
5

0.78

4.
0

5.
0

6.
0

●

●
●

●

●

● ●
●● ●

●
●

●
●

●

●
●

●

●

● ●

●
●

●

●●●

●

●
●

●

●
●

●
●

● ●●

●

●
●

●

●

●

●

●

●
●

●

●
●

●● ●●●
●●

● ●

●
●

● ●●

●●●●

●●
●

●
●●

●●
●

●

●●
●

●

●●

●

●●●
●●
●●●●

●●●
●●
●●●●

●●

●●●●

●● ●
●●●●
●●

●●

●● ●●●
●●●●●
●

●●●●

●

●●

●●
●

●●
●
●
●

●
●
●●●●

●

●
●●
●●●●

●● ●●●
●
●●

●
●●● ●

●
●●●

●● ●●
●

●●
●
●

●●●●
●●●●●●●●

●
●

●●●●
●●●
●●●●

●●●
●●

●●●●●

●●

●●
●●●
●
●
●
●●
●

●●
●●●

●●●
●
●●●
●
●

●●●●●●
●●●●
●●
●●

●●
●●●●●●●

●●

●●●●
●

●

●
●
●●●
●●●●●●●●
●●●●●●

●●

●
●
●●

●
●●
●

●
●

●

●
●

●

●
●●●

●●
●●●
●●●

●●●
●

●

●
●●●●
●●●●●
●●●

●

●

●●●●●●●●●
●
●
●●

●●●●●●●●
●●●●●●●●

●●
●

●●●●●
●

●
●

●
●●●

●●●●
●

●

●
●●
●●

●●

●●●
●
●
●●

●●●●

●

●●
●
● ●

●●

●●●●

●●●
●●

●

●

●●●
●●●●
●
●
●
●●
●
●
●
●
●

●

●
●

●

●

●●
●●●

●
●

●
●

●

●
●

●

●

●●

●
●

●

●●●

●

●
●

●

●
●

●
●

●●●

●

●
●

●

●

●

●

●

●
●

●

●
●
●●●●●

●●
●●

●
●

●●●

●●●●

●●
●
●
●●
●●

●

●

●●
●

●

●●

●

●●●●●
●●●●

●●●●●
●●●●

●●

●●●●

●●●
●●●●

●●
●●

●●●●●
●●●●●

●
●●●●

●

●●

●●
●

●●
●

●
●

●
●

●●●●

●

●
●●

●●●●●●
●●●

●
●●

●
●●●●

●
●●●
●●●●

●
●●

●
●

●●●●
●●●●●●●●

●
●

●●●●
●●●

●●●●
●●●

●●

●●●●●

●●

●●
●●●
●

●
●

●●
●

●●
●●●

●●●
●
●●●

●
●

●●●●●●
●●●●
●●
●●
●●

●●●●●●●
●●

●●●●
●

●

●
●

●●●●
●●●●●●●

●●●●
●●
●●

●
●

●●

●
●●
●

●
●

●

●
●

●

●
●● ●

●●
●●●

●●●
●● ●●●

●
●●●●

●●●●●
●●●

●

●

●●●●●●●●●
●

●
●●

●●●●●●●●
●●●●●●●●

●●
●

●●●●●
●

●
●

●
●●●●●

●●
●

●

●
●●

●●●
●

●●●
●
●
●●●●●●

●

●●
●

●●

●●

●●●●

●●●
●●

●

●

●● ●
●●●●

●
●
●
●●
●
●
●
●

●

●

●
●

●

●

●●
●●●

●
●

●
●

●

●
●

●

●

●●

●
●

●

●●●

●

●
●

●

●
●

●
●

●●●

●

●
●

●

●

●

●

●

●
●

●

●
●
●●●●●

●●
●●

●
●

●●●

●●●●

●●
●

●
●●

●●
●

●

●●
●

●

●●

●

●●●
●●
●●●●

●●●
●●
●●●●

●●

●●●●

●●●
●●●●
●●
●●

●●●●●
●●●●●
●
●●●●

●

●●

●●
●
●●
●
●
●

●
●
●●●●

●

●
●●
●●●●
●●●●
●
●
●●

●
●●●●

●
●●●
●●●●

●
●●

●
●

●●●●
●●●●●●●●

●
●

●●●●●●●
●●●●

●●●
●●

●●●●●

●●

●●
●●●

●
●
●
● ●●

●●
●●●

●●●
●

●●●
●
●

●●●●●●
●●●●

●●●●
●●

●●●●●●●
●●

●●●●
●

●

●
●

●●●
●●●●●●
●●

●●●●●●
●●

●
●
●●

●
●●
●

●
●

●

●
●

●

●
●●●

●●
●●●
●●●

●●●
●
●

●
●●●●

●●●●●
●●●

●

●

●●●●●●●●●
●
●
●●

●●●●●●●●
●●●●●●●●

●●
●

●●●●●
●
●
●

●
●●●●●

●●
●

●

●
●●
●●●

●

●●●
●
●
●●●●●●

●

●●
●
●●

●●

●●●●

●●●
●●

●

●

● ●●
●●● ●

●
●
●

●●
●

●
●

●
●

●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●

●●
●●●
●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●

●●●
MT_l

0.11 0.84 0.92

●
●

●

●

●

●
●

●

●
●

●
●

●

●●

●●
●

●

● ●

●●

●

●●
●

●●

●

●

●

●

●
●

●
●●

●

● ●
●

●

●

●
● ●

●

●

●

●
●● ●●●

●
●

● ● ●●●

●
●

●●
●
●

●●

●

●●●●●
●

● ●●

●
●

●
●

●
●●●●●

●●
●●●●●●●
●●
●●●●●●●●

●

● ●●●
●●●●●●

●

● ●
●●

●●
●●●●●●●●●●●

●●●●●●
●
●

●●●
●
●●

●
●
●●●
●●●

●●
●
●
●
●
●●

●●
●

● ●

●

●
●●●● ●●●●●●●

●

●

●

●

●
●
●●

●●
●● ●● ●

●●

●
●
●●

●●●●●●●
●
●●
●
●
●
●
●
●

●●
●●
●

●

●

●

●
●●
●

●●

●

●

●

●
●
●●●●●

●

●●

●
●●

●
●

●●
●

●●

●
●

●●●●●
●●●●●●

●●
●●
●●●

●●●

●

●
●
●
●

●
●●●

●●●●●

●
●● ●●●

●

●
●●
●

●
●●

●
●

●

● ●●

●

●●●●●
●
●
●

●●

●●●
●

●
●●
●

●
●●●●
●●●

●

●

●●●●●●●
●●
●
●
●●●●●●●

●
●
●

●●●●●●●●●●●●●●●
●
●

●
●

●
●●●

●●●●
●

●
●

●●
●●

●●
●

●
●●●●●

●
●
●● ●

●
●●
● ●

●●
●●●
●

●●●

●●

●

●

●

●

●

●●●

●

●

●

●

●●
●

●

●

●●

●
●
●

●

●

●
●

●

●
●

●
●

●

●●

● ●
●

●

●●

●●

●

●●
●

●●

●

●

●

●

●
●

●
●●

●

●●
●

●

●

●
●●

●

●

●

●
●●●●●

●
●

●● ●●●

●
●

●●
●
●

●●

●

●●●●●
●

● ●●

●
●

●
●

●
●●●●●

●●
●●●●●●●

●●
●●●● ●●●●

●

●● ●●
●●●●●●

●

●●
●●
●●

●●●●●●●● ●●●
●●●●●●●
●

●●●
●

●●
●

●
●●●

●●●
●●

●
●

●
●

●●
● ●

●
●●

●

●
●●●●●●●●●●●

●

●

●

●

●
●
●●

●●
●● ●●●

●●

●
●

●●
●●●

●●●●
●
●●

●
●

●
●

●
●

●●
●●

●

●

●

●

●
●●

●

●●

●

●

●

●
●

●●●● ●
●

●●

●
●●
●

●

●●
●

●●

●
●

●●●●●
●●●●●●

●●
●●

● ●●

●●●

●

●
●
●
●
●

●●●
●●●●●

●
●●●●●

●

●
●●
●

●
●●

●
●

●

●●●

●

●●●●●
●
●
●

●●

●●●
●

●
●●

●

●
●●●●
●●●

●

●

●●●●●●●
●●

●
●

●●●●●●●
●

●
●
●●●●●●●●●●●●●●●
●

●
●

●

●
●●●

●●●●
●

●
●

●●
●●

●●
●

●
●●●●●

●
●
●● ●

●
●●

●●
●●

●●●
●

●●●

●●

●

●

●

●

●

●●●

●

●

●

●

●●
●

●

●

●●

●
●

●

●

●

●
●

●

●
●

●
●

●

●●

●●
●

●

●●

●●

●

●●
●

●●

●

●

●

●

●
●

●
●●

●

●●
●

●

●

●
● ●

●

●

●

●
●●●●●

●
●

●● ●●●

●
●

●●
●

●
●●

●

●●●●●
●

● ●●

●
●

●
●

●
●●●●●

●●
●●●●●●●

●●
●●●● ●●●●

●

●●●●
●●●●●●

●

●●
●●
●●
●●●●●●●●●●●
●●●●●●●
●

●●●
●
●●

●
●
●●●
●●●
●●
●

●
●
●
●●

●●
●
●●

●

●
●●●●●● ●●● ●●

●

●

●

●

●
●
●●

●●
●●●●●

●●

●
●
●●

●●●
●●●●

●
●●

●
●
●
●

●
●

●●
●●
●

●

●

●

●
●●

●

●●

●

●

●

●
●

●●●●●
●

●●

●
●●
●

●

●●
●

●●

●
●

●●●●●
●●●●●●

●●
●●

●●●

●●●

●

●
●
●
●
●
●●●
●●●●

●

●
●●●●●

●

●
●●
●

●
●●

●
●

●

●●●

●

●●●●●
●

●
●

●●

●●●
●

●
●●
●

●
●●●●

●●●
●

●

●●●●●●●
●●

●
●
●●●●●●●

●
●
●

●●●●●●●●●● ●●●●●
●

●
●
●

●
●●●
●●●●

●
●

●

●●
●●
●●

●

●
●●●●●
●
●
●● ●

●
●●
●●
●●
●●●
●

●●●

●●

●

●

●

●

●

●●●

●

●

●

●

●●
●

●

●

●●

●
●

●

●

●

●
●

●

●
●

●
●

●

●●

●●
●

●

●●

●●

●

●●
●

●●

●

●

●

●

●
●

●
●●

●

●●
●

●

●

●
● ●

●

●

●

●
●●●●●

●
●

●● ●●●

●
●

●●
●

●
●●

●

●●●●●
●

● ●●

●
●

●
●

●
●●●●●

●●
●●●●●●●

●●
●●●● ●●●●

●

●●●●
●● ●●●●

●

●●
●●
●●
●●● ●●●●● ●●●

●●●●●●
●
●

●●●
●

●●
●

●
●●●

●●●
●●
●
●
●
●

●●
●●

●
●●

●

●
●●●●●●●●●●●

●

●

●

●

●
●
●●

●●
●● ●●●

●●

●
●

●●
●●●
●●●●

●
● ●

●
●
●

●
●
●

●●
●●
●

●

●

●

●
●●

●

● ●

●

●

●

●
●

● ●●●●
●

●●

●
●●
●

●

●●
●

●●

●
●

●●●●●
●●●●●●

●●
●●

● ●●

●●●

●

●
●
●
●
●
●●●
●●●●

●

●
●●● ●●

●

●
●●
●

●
●●

●
●

●

●●●

●

●● ●●●
●
●
●

●●

●●●
●

●
●●
●

●
●●●●

●●●
●

●

●●●●●●●
●●

●
●

●●●●●●●
●

●
●

●●●●●●●●●● ●●●●●
●

●
●

●

●
●●●

●●●●
●

●
●

●●
●●

●●
●

●
●●●●●

●
●
●● ●

●
●●

●●
●●

●●●
●

●●●

●●

●

●

●

●

●

●●●

●

●

●

●

●●
●

●

●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●

●●
●●●
●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●

MES_l
0.20

8.
2

8.
6

0.15

1.
5

2.
5

3.
5

●

●
●

●● ● ●
●● ●

●
● ●●
●

●●
●

● ● ●●
●

●

●●
●

●●

●● ●● ●
●● ●● ●● ●●
●

●
●● ● ●

● ●
●●

● ●
●

●●● ● ● ●●● ●●
●●●
● ●●

●

●
●●●●● ●

●●

●

● ●

●

●

●●
●●●●

●●
●

●●
●●
●●
●●

●

●
●●
●●
●

●
● ●●

●●●
●
●

●
●

●
● ●●
●●

●
●

●●
●

●
●

●
●
●

●
●

●●
●

●
●

●
●●

●
●
●
●
●●

●

●

●
●
●
●

●

●
●
●

●●●●●●
●

●
●● ●

● ●
●●●●

●
●●
●

●●
●

●
●
●
●
●●

●●

●●
●●

●
●

●
●

●
●
●●●

●●
●
●

●
●
●●
●●
●●
●●
●●

●
●●
●
●

●
●●

●
●
●

●
●
●

●

●

●
●●
●
●●
●

●●

●●●●●●
●
●●
●

●
●

●
●

●●
●●●
●●●●●●

●●
●●
●

●

●●
●●
●●●●●●●●

●
●●●●
●●

●●

●●
●
●

●

●
●
●

●

●
●

●
●

●

● ●●
●

●
●
●●●

●●●●●
●
●

●

●
●●●
●

●●●●●●●●

●

●

●●●●●●●
●
●●

●●
●

●●●●

●
●●
●

●
●
●
●●
●
●●

●
●●

●●
●●●●

●●

●
●
●

●
●

●

●
●

●

●

●
●●
●
●●●

●●●●●
●
●

●●●●
●

●●
●
●

●

●●

●●●

●

●●●

●●●●

●

●

●

●
●●

●
●●●●●●●●●

●

●

●
●

●● ●●●●●
●

● ●●
●

● ●
●

● ●●●
●

●

●●●
●●

●● ●●●
●●●

●
●●●●
●

●
●●●●

● ●
●●
●●
●
●●● ●● ●●●●●●●●

● ●●
●

●
●●●●● ●

●●

●

● ●

●

●

●●
●●
●●
●●

●

●●
●●
●●
●●

●

●
● ●

●●
●

●
●● ●

●●
●

●
●

●
●

●
●●
●
●●
●

●

●●
●

●
●

●
●

●

●
●

●●
●

●
●
●

●●

●
●

●
●

●●

●

●

●
●
●

●

●

●
●
●

●●●●●●
●

●
●●●

●●
●●●●

●
●●
●
●●
●

●
●
●
●
●●

●●

●●
●●

●
●

●
●
●
●
●●

●

●●
●

●

●
●
●●

●●
●●
●●

●●

●
●●

●
●

●
●●

●
●
●

●
●
●
●

●

●
●●

●
●●
●

●●

●●●●●●
●

●●
●

●
●

●
●

●●
●●●●●●●●●

●●
●●

●

●

●●
●●

●●●●●●●●
●
●●●●
●●
●●

●●
●

●

●

●
●

●

●

●
●

●
●

●

●●●
●

●
●

●●●

●●●●●
●
●

●

●
●●●
●

●●●●●●●●

●

●

●●●●●●●
●
●●

●●●

●●
●●

●
●●
●
●
●
●
●●
●
●●

●
●●

●●
●●●●

●●

●
●
●

●
●

●

●
●

●

●

●
●●

●
●●●

●●●●●
●
●

●●●●
●

●●
●

●
●

●●

●●●

●

●●●

●●
●●

●

●

●

●
●●

●
●●●●●●●●●

●

●

●
●

●● ●●●●●
●

● ●●
●

●●
●

● ●●●
●

●

●●●
●●

●● ●● ●
●●●

●
●●●●

●
●

●● ●●
● ●

●●
●●
●
●●● ●● ●●●●●●●●

● ●●
●

●
●●●●● ●

●●

●

● ●

●

●

●●
●●

●●
●●
●

●●
●●

●●
●●
●

●
● ●

●●
●

●
●●●
●●
●
●
●

●
●

●
●●
●
●●
●
●

●●
●

●
●

●
●
●

●
●

●●
●

●
●
●
●●

●
●
●
●
●●

●

●

●
●
●
●

●

●
●
●
●●●●●●

●
●
●●●

●●
●●●●

●
● ●
●
● ●

●

●
●
●
●

●●

●●

●●
●●

●
●

●
●
●

●
●●●

●●
●
●

●
●
●●
●●

●●
●●

●●

●
●●

●
●

●
●●

●
●
●

●
●

●
●

●

●
●●

●
●●
●

●●

●●●●●●
●
●●

●
●
●

●
●

●●
●●●●●●●●●

●●
●●

●

●

●●
●●
●●●●●●●●
●

●●●●
●●
●●

●●
●
●

●

●
●
●

●

●
●

●
●

●

●●●
●

●
●

●●●

●●●●●
●
●
●

●
●●●
●

●●●●●●●●

●

●

●●●●●●●
●
●●

●●
●

●●
●●

●
●●
●

●
●

●
●●
●
●●

●
● ●

●●
●●●●

●●

●
●
●

●
●

●

●
●

●

●

●
●●
●
●●●

●●●●●
●
●
●●●●

●

●●
●
●
●

●●

●●●

●

●●●

●● ●●

●

●

●

●
●●

●
●●● ●●●● ●●

●

●

●
●

●● ●●●●●
●

● ●●
●

●●
●

● ●●●
●

●

●●●
●●

●● ●● ●
●●●

●
●●●●

●
●

●● ● ●
● ●

●●
●●
●
●●●●● ●●●●●●●●

● ●●
●

●
●●●●● ●

●●

●

● ●

●

●

●●
●●
●●

●●
●

●●
●●
●●

●●
●

●
● ●

●●
●

●
●●●

●●
●

●
●

●
●

●
●●
●
●●
●
●

●●
●

●
●

●
●

●

●
●

●●
●

●
●

●
●●

●
●

●
●

●●

●

●

●
●

●
●

●

●
●
●
●●●●●●

●
●
●●●

●●
●●●●

●
●●
●
●●
●

●
●
●

●
●●

●●

●●
●●

●
●

●
●
●
●
●●●

●●
●
●

●
●
●●
● ●

●●
●●

●●

●
● ●

●
●

●
●●

●
●
●

●
●

●
●

●

●
●●

●
●●
●

●●

●●●●●●
●
●●
●

●
●

●
●

●●
●●●●●●●●●

●●
●●

●

●

●●
●●
●●●●●●●●
●

●●●●
●●

●●

● ●
●
●

●

●
●

●

●

●
●

●
●

●

●●●
●

●
●

●●●

●●●●●
●
●

●

●
●●●
●

●●●●●●●●

●

●

●●●●●●●
●
●●

●●●

●●
●●

●
●●
●

●
●
●
●●
●
●●

●
● ●

●●
●●●●

●●

●
●
●

●
●

●

●
●

●

●

●
●●
●
●●●

●●●●●
●
●
●●●●

●

●●
●

●
●

●●

●●●

●

●●●

●● ●●

●

●

●

●
●●

●
●●
●●●●●●●

●

●

●
●

● ●●●
● ●●
●

●● ●
●

●●
●

●●● ●
●

●

●●
●

●●

● ●● ●●
● ● ●●● ●● ●

●
●

●●●●
●●

●●
●●

●
● ●●●●●

●● ●●
●●●
●●●

●

●
●●●●●●

●●

●

●●

●

●

●●
●●●●

●●
●

●●
●●●●

●●
●

●
●●
●●
●

●
●●●
● ●

●
●
●

●
●

●
●●

●
●●

●
●

●●
●

●
●

●
●
●

●
●

●●
●

●
●
●

●●

●
●
●

●
●●

●

●

●
●

●
●

●

●
●
●

●●●●●●
●
●

●●●

●●
●●●●

●
●●
●
●●
●

●
●

●
●

● ●

●●

●●
●●

●
●

●
●
●

●
●●

●

●●
●
●

●
●
●●
●●

●●
●●
●●

●
●●

●
●

●
●●

●
●
●

●
●

●
●

●

●
●●
●

●●
●

●●

●● ●●●●
●

●●
●

●
●

●
●

●●
●●●
●●●●●●

●●
●●

●

●

●●
●●

●●●●●●●●
●

●●●●
●●

●●

●●
●

●

●

●
●

●

●

●
●

●
●

●

●●●
●

●
●
●●●

●●●●●
●
●
●

●
●●●
●

●●●●●●●●

●

●

●●●●●●●
●
●●

●●●

●●
●●

●
●●
●

●
●
●
●●
●
●●

●
●●

●●
●●●●
●●

●
●
●

●
●

●

●
●

●

●

●
●●

●
●●●

● ●●●●
●

●
●● ●●
●

●●
●

●
●

●●

●●●

●

●●●

●●● ●

●

●

●

●
●●

●
● ●
●●●● ●● ●

●

●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●
●●●
●●
●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●
●●●S100_l

0.92

6.4 6.8 7.2

● ●●

●●
●

●●●
●

●
● ●●●

●
●

●

●
● ●

●● ●
●

●●
●●

●●
●

● ●

●

● ●●
●● ●● ●

● ●● ●
●●

●
●

●●
●

●●●●
● ● ●

●●
●●●●

●
●

●
●

●

●

●●
●
●● ●

●●

●

●
●

●●

●●
●●
●●●●
●

●●
●●●●●●
●

●●
●
●●
●

●
● ●

●●
●●
●●

●●

●
● ●●●

●●●
●●

●
●●
●●
●

●●

●
●

●
●●
●

●
●

●
●
●
●
●●

●

●

●●
●
●
●●●●

●●
●
●
●●

●
●

●● ●

●

●
●
●●●

●●
●●●●●

●●●
●●
●
●
●

●●
●●

●
●

●●
●●
●●●
●●●
●●●●
●●

●●●
●●
●●

●●
●●
●

●
●
●

●●●

●
●
●●

●

●●●
●
●●●

●
●

●●●●
●●
●
●●
●

●
●

●●●●
●●
●
●●●●

●●

●●
●●
●

●

●●
●●●●●●●

●●
●●●●●●●
●

●●
●●

●
●

●

●
●
●

●

●
●

●●

●●
●●
●

●
●
●●●
●●●●●

●

●

●

●●
●●●

●●●●●●

●●

●

●

●●
●●●
●●●●

●
●
●●

●●●
●
●
●●
●●●

●●●●●●
●●

●
●●●●●

●
●

●

●
●●
●●●●●

●

●

●
●●
●
●●●

●●●
●●
●●

●●●●

●

●●
●●

●

●●

●●●
●

●●●

●●
●

●

●

●

●

●
●
●

●●●
●●
●●●●

●

●

●●●

●●
●
●●●●

●
● ●●●
●

●
●

●
●●

●●●
●
●●

●●
●●

●

●●

●

●●●
●●●●●

●●●●
●●
●

●
●●

●
●●●●
●● ●

●●
●●●●

●
●

●
●

●

●

●●
●
●● ●

●●

●

●
●
●●

●●
●●●

●●●●

●●
●●●●●●●

●●
●

●●
●

●
●●

●●
●●

●●
●●

●
●●●●

●●●●
●

●
●●

●●
●

●●

●
●

●
●●

●

●
●

●
●

●
●

●●

●

●

●●●
●
●●●
●

●●
●

●
●●

●
●
●●●

●

●
●
●●●
●●

●●●●●

●●●
●●

●
●
●

●●
●●

●
●

●●
●●

●●●
●●

●
●●●●

●●
●●●●●

●●

●●
●●

●
●

●
●

●●●

●
●
●●

●

●●●
●
●●●

●
●

●●●●
●●

●
●●
●

●
●

●●●●
●●
●

●●●●
●●

●●
●●

●

●

●●
●●●●●●●

●●●●●●●
●

●
●

●●
●●

●
●

●

●
●

●

●

●
●

●●

●●
●●

●

●
●

●●●
●●●●●

●

●

●

●●
●●●

●●●●●●

●●

●

●

●●
●●●
●●●●

●
●

●●

●●●●●
●●
●●●

●●●●●●
●●

●
●●●●●

●
●

●

●
●●

●●●●●
●

●

●
●●

●
●●●

●●●
●●
●●

●●●●

●

●●
●●

●

●●

●●●●

●●●

●●
●

●

●

●

●

●
●
●

●●●
●●

●●●●

●

●

6.5 7.5 8.5

●● ●

●●
●
●●●

●

●
● ●●●

●
●

●

●
●●

●● ●
●
●●

●●
●●
●

● ●

●

●●●
●●●● ●

● ●● ●
●●

●
●
●●
●

●●●●
●● ●

●●
●●●●

●
●

●
●

●

●

●●
●
●● ●

●●

●

●
●

●●

●●
●●●

●●●
●

●●
●●●●●●

●

●●
●
●●
●

●
●●
●●
●●
●●
●●

●
●●●●
●●●
●●
●
●●

●●
●

●●

●
●

●
●●
●

●
●

●
●
●
●
●●

●

●

●●
●
●
●●●
●
●●
●
●
●●

●
●
●●●

●

●
●
●●●
●●

●●● ●●

●●●
●●

●
●
●

●●
●●

●
●

●●
●●

●●●
●●
●
●●●●

●●
●●●
●●

●●

●●
●●
●

●
●
●

● ●●

●
●

●●

●

●●●
●

●●●

●
●

●●●●
●●

●
●●

●
●
●
●●●●
●●
●
●●●●
●●

●●
●●

●

●

●●
●●●●●●●

●●
●●●●●

●
●
●

●●
●●

●
●

●

●
●
●

●

●
●

●●

●●
●●
●

●
●

●●●
●●●●●

●

●

●

●●●
●
●

●●●●●●

●●

●

●

●●
●●●
●●●●

●
●
●●

●●●●●
●●
●●●

●●●●●●
●●

●
●●●●●

●
●
●

●
●●
●●●●●

●

●

●
●●
●
●●●

●●●●●
●●
●●●●

●

●●
●●
●

●●

●●●●

●●●

●●
●

●

●

●

●

●
●
●

●●●
● ●●●● ●

●

●

●●●

●●
●
●●●

●

●
● ●●●

●
●

●

●
●●

●● ●
●
●●

●●
●●
●

● ●

●

●●●
●●●● ●

● ●● ●
●●

●
●

●●
●

●●●●
●● ●

●●
●●●●

●
●

●
●

●

●

●●
●
●● ●

●●

●

●
●
●●

●●
●●●

●●●●

●●
●●●●●●●

●●
●
●●
●

●
●●

●●
●●

●●
●●

●
●●●●

●●●
●●

●
●●

●●
●

●●

●
●

●
●●

●

●
●

●
●

●
●

●●

●

●

●●
●
●
●●●
●
●●
●
●

●●

●
●
●●●

●

●
●
●●●
●●

●●●●●

●●●
● ●

●
●

●

●●
●●

●
●

●●
●●

●●●
●●
●
●●●●

●●
●●●
●●

●●

●●
●●
●
●
●

●

●●●

●
●

●●

●

●●●
●

●●●

●
●

●●●●
●●

●
●●
●

●
●

●●●●
●●
●
●●●●
●●

●●
●●

●

●

●●
●●●●●●●

●●
●●●●●
●

●
●

●●
● ●

●
●

●

●
●

●

●

●
●

●●

●●
●●
●

●
●

●●●
●●●●●

●

●

●

●●●
●
●

●●●●●●

●●

●

●

●●
●●●
●●●●

●
●

●●

●●●●●
●●
●●●

●●●●●●
●●

●
●●●●●

●
●

●

●
●●
●●●●●

●

●

●
●●
●
●●●

●●●
●●
●●

●●●●

●

●●
●●

●

●●

●●●●

●●●

●●
●

●

●

●

●

●
●
●

●●
●

●●●●●●

●

●

8.2 8.6

● ●●

● ●
●

●● ●
●

●
●● ●●
●
●

●

●
●●

●●●
●

●●
●●

● ●
●

●●

●

● ●●
● ●● ●●

●●●●
● ●

●
●

●●
●
●● ●●
●●●
●●

●● ●●
●

●

●
●

●

●

●●
●
●●●
●●

●

●
●

●●

●●
●●
●●●●●

●●
●●
●●●●●

●●
●
●●
●

●
●●
●●

●●
●●
●●

●
●●●●
●● ●●

●
●
●●

●●
●

●●

●
●

●
●●
●

●
●

●
●
●

●
●●

●

●

●●
●

●
●●●●
●●

●
●

●●

●
●

●●●

●

●
●
●●●
●●
●●●●●

● ●●
●●

●
●
●

●●
●●

●
●

● ●
●●

●●●
●●●

●●●●
● ●

● ●● ●●
●●

●●
●●
●

●
●

●

●●●

●
●

●●

●

● ●●
●

●●●

●
●

●● ●●●●
●

●●
●

●
●

●● ●●
●●

●
●●●●

●●

●●
●●

●

●

●●
●● ●●●●●

●●●●●●●●●
●

●●
●●
●

●

●

●
●

●

●

●
●

●●

● ●
●●

●

●
●
●●●

●●●●●
●

●

●

●●●●●

●●●●●●

●●

●

●

●●
●●●
●●●●
●
●

●●

●●●●
●

●●
●●●

●●●●●●
●●
●
●●●●●
●
●

●

●
●●

●●●●●
●

●

●
●●

●
●●●

● ●●●●
●●

●● ●●

●

●●
●●

●

●●

●●●●

●●●

●●
●

●

●

●

●

●
●
●

●●
●

●●●● ●●

●

●

● ● ●

●●
●
●●●

●

●
●●●●

●
●

●

●
●●
●●●

●
●●
●●

●●
●

●●

●

●●●
●●●●●

● ●●●
●●

●
●
●●●
●●●●

●●●
●●
●●●●

●
●

●
●

●

●

●●
●
●●●

●●

●

●
●

● ●

●●
●●

●●
●●●

●●
●●

●●●●●

●●
●

●●
●

●
●●
●●●

●
●●

●●

●
●●●●
●● ●●●

●
●●
●●

●

●●

●
●

●
●●

●

●
●

●
●

●
●
●●

●

●

●●●
●

●●●●
●●
●

●
●●

●
●

●●●

●

●
●
●●●

●●
● ●●● ●

●●●
●●

●
●
●

●●
●●

●
●

●●
●●
●●●

●●
●

● ●●●●
●
●●●●●

●●

●●●●
●

●
●
●

●●●

●
●

●●

●

●●●
●

●●●

●
●

●●●●
●●

●
●●

●
●

●
●● ●●
●●
●

●●●●
●●

●●
●●

●

●

●●
●●●●●●●

●●
●●●●●
●

●
●

●●
●●

●
●

●

●
●

●

●

●
●

●●

● ●
●●

●

●
●

●●●
●●●●●

●

●

●

●●●
●

●

●●●●●●

●●

●

●

●●
●●●

●●●●
●

●
●●

●●●● ●
●●

●●●
●●●●●●
●●●
●●●●●

●
●
●

●
● ●

● ●● ●●
●

●

●
●●

●
●●●

●●●
●●

●●
●●●●

●

●●
●●
●

●●

●●● ●

●●●

●●
●
●

●

●

●

●
●
●

●●
●

●●
●●●●

●

●

4.8 5.2 5.6

4.
8

5.
2

5.
6

●●●
●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●
●●●

●●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●

●TS_l

Figure 2: Scatter plots (lower left triangle), QQ plots (diagonal) and absolute val-

ues of correlations (upper right triangle) of the logarithmized data W l = log(weight),

MP l = log(max power), CC l = log(cubic capacity), MT l = log(max torque), MES l =

log(max engine speed), S100 l = log(seconds to 100) and TS l = log(top speed).

following formula had been derived by car experts in Belgium for the classification of sports cars

and ordinary cars, respectively, see Ingenbleek–Lemaire [14]. Define the variables

τ =
weight(max power
0.735499

) 3
√
seats

4

√
cubic capacity

1000
, and, respectively,

τ+ =
10001/4

0.735499
τ =

weight

max power
3
√
seats 4

√
cubic capacity.

The values of τ are provided on line 14 of Listing 1. A car is defined to be a sports car iff

τ < 17 or, equivalently, τ+ < 129.9773.

4

 Electronic copy available at: https://ssrn.com/abstract=3439358

This results in the binary labels on line 13 of Listing 1. Thus, the Belgium sports car classification

is done with a multiplicative formula. On the log-scale we receive a linear formula, namely,

y = log(τ+) = log(weight)− log(max power) +
1

3
log(seats)

+
1

4
log(cubic capacity)

??
< log(129.9773) = 4.86736. (1.1)

This latter formula corresponds to a linear regression equation with given slopes. In Figure 3

10 20 30 40

0.
00

0.
02

0.
04

0.
06

0.
08

sports car: Belgium criterion 1970

value of tau

em
pi

ric
al

 d
en

si
ty

Figure 3: Empirical density of variable τ over all n = 475 cars (line 14 in Listing 1), the red

vertical line shows the critical value of τ < 17 for sports cars, and the green line τ < 21 (which

collects 42.7% of all cars considered).

we plot the empirical density of τ over all n = 475 cars in our data of Listing 1. The red vertical

line is the critical value of τ < 17 for sports cars. 15.2% of all cars have a value τ smaller than

this critical value, and 42.7% of all cars have a value τ smaller than 21 (green line in Figure 3).

The goal of Ingenbleek–Lemaire [14] has been to improve this expert choice using principal

components analysis (PCA). First, Ingenbleek–Lemaire [14] defined the following features (co-

variates)

x∗1 = log(weight/max power),

x∗2 = log(max power/cubic capacity),

x∗3 = log(max torque), (1.2)

x∗4 = log(max engine speed),

x∗5 = log(cubic capacity).

These new features are illustrated in Figure 4. The diagonal shows the QQ plots of x∗1, . . . , x
∗
5,

the lower left triangle the scatter plots and the upper right triangle the resulting absolute values

of the correlations.

Based on the features (1.2), the goal of Ingenbleek–Lemaire [14] is to find good regression

parameters α1, . . . , α5 such that the following dependent variable allows us to discriminate sports

cars from ordinary cars

y∗ = α1x
∗
1 + α2x

∗
2 + α3x

∗
3 + α4x

∗
4 + α5x

∗
5. (1.3)

5

 Electronic copy available at: https://ssrn.com/abstract=3439358

●●
● ●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●
●●●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●
●●●●

●
x1s

−4.0 −3.0

0.75 0.82

8.2 8.4 8.6 8.8

0.31

1.
5

2.
5

3.
5

0.67
−

4.
0

−
3.

0

●

●
●

●
● ●

●

● ●

●●
●

● ●
●●●● ●

●

●

●

●

●●

●●

●●
●

●●

●

●●

●
●

●

●●

●
●
●●

●

●

● ●

●

●
●●
●●

●

●

●

●
●

●●●
●

●●●●●

●

●
●

●

●● ●●

●●

●

●
●

●●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●●●●
●●

●
●

●●●●●
●●

●●●

●

●

●

●

●●
●●

●●

●●

●●

●

● ●●●
●●

●●●

●

●● ●●

●

●●

●●
●

●●
●

●

●

●
●

●

●

●●

●

●

●
●
●

●●●●●
●

●●

●

●●

●
●●

●●

●

●
●●●●●●

●

●●

●●

●
●●

●
●

●
●

●

●
●●●

●

●

●
●

●
●

●

●
●

●
●

●

●

●●●

●●●

●

●

●●
●

●

●
●●●

●

●

●

●

●

●
●

●

●
●
●

●

●
●●

●
●●●

●
●

●●
●●

●●●
●

●●

●

●

●
●●●

●●●

●●
●

●
●

●

●●
●●●

●

●
●●●

●
●●●●

●

●●

●

●
●

●
●●

●
●● ●

●●

●

●

●

●●

●

●
●

●●

●
●●●

●

●
●

●●●

●

●
●

●●

●
●

●
●

●
●●

●

●●●
●●
●

●●
●

●●

●

●

●

●

●

●
●●

●●
●●

●●●

●

●● ●●●●●
●

●
●

●●●●●●●●
●●

●

●●●●
●●

●

● ●
●●●

●●

●●
●

●

●●●
●●

●

●
●

●●●●●●

●

●●
●

●
●●●

●
●

●
●

●●
●

●●●●

●

●

●

●
●

●

●

●

●●●

●●
●

●
●

●
●

●
●

●

●

●

●

●

●●
●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●
●●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●
●●●●
● ●

x2s

0.46 0.61 0.15

●

●

●

●

●

●
●

● ●●●
●

●
●

●

●

●

●

●

●

●
●

●

●●

●●

●
●●

●●

●

●●

●

●

●

●
●
●
●

●

●

●
●

● ●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●
●●●

●●

●
●

●

●
● ●●

●●
●
●

●●
●
●

●

●●
●●

●

●

●

●

●

●
●

●

●●

●

●●●
●●

●●
●●

●●●
●●

●●
●●

●●

●
●

●
●

●●●
●●

●●

●●

●●

●● ●●●
●●●●●

●

●●
●●

●

●●

●●
●
●●

●

●
●

●
●

●● ●●

●

●
●●

●
●●●●●
● ●
●

●
●●

●
●●●●

●
●●●
●●●●
●

●●
●

●

●●●●

●●
●

● ●●●●

●
●

●●●
●

● ●●
●●●●

●●●
●●

●
●

●
●
●

●●

●●

●●●
●

●
●

●
●●

●
●

●●
●

●●●
●

●●●
●

●

●●●●●●
● ●●

●
●●

●●
●●

●●●●●●
●

●●

●●
●●

●

●

●
●

●●
●
●●●●●

●●
●
●●
●●

● ●

●
●

●

●
●●

●

● ●
●

●

●

●

●
●

●

●
●●●

●●

●●●
●●●

●●●
●

●

●
●●●●

●●●
●●
●●●

●

●

●

●

●
●

●
●

●●● ●●●●●●
●

●
●●

●
●●●●● ●●

●●
●●●●●●

●●

●

●●●●●
●

●
●

●
●●

●●●
●●

●

●

●

●●
●

●●
●

●●●
●
●
●

●
●
●●●

●

●●
●

●●

●●

●●●●

●●●
●●

●

●

●

● ●●

●●
●
●●● ●

●
●

●
●●

●

●
●

●
●

●

●

●

●

●

●
●

●● ●●
●

●
●

●

●

●

●

●

●

●
●

●

●●

●●

●
●●

●●

●

●●

●

●

●

●
●

●
●

●

●

●
●

●● ●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●
●●●

● ●

●
●

●

●
●●●

●●
●

●

●●
●

●
●

●●●●

●

●

●

●

●

●
●

●

● ●

●

●● ●
●●
●●

●●

●● ●
●●
●●

●●

●●

●
●

●
●

● ●●
●●
●●

●●

●●

● ●●●●
●●●●●

●

●●
●●

●

●●

●●
●

●●
●

●
●

●
●

● ●●●

●

●
● ●

●
●●●●●●●
●

●
●●

●
●●●●

●
●●●

●●●●
●

●●
●
●

●●●●

●●
●

●●●●●

●
●

●●●
●

●●●
●●● ●

●●●
●●

●
●

●
●

●

●●

●●

●● ●
●

●
●

●
●●

●
●

●●
●

●●●
●

●●●
●

●

●●●●●●
●●●

●
● ●

● ●
●●
●●●

●●●
●

● ●

●●
●●
●

●

●
●
●●

●
●●●● ● ●●

●
●●
● ●

●●

●
●

●

●
● ●

●

●●
●

●

●

●

●
●

●

●
●● ●

●●

●●●
●● ●

●● ●
●

●

●
●●●●

●●●●●
● ●●

●

●

●

●

●
●

●
●

●●●●●●●●●
●

●
●●

●
●●●● ●● ●
●●
●●●●●●

●●

●

●●●●●
●

●
●

●
●●
●●●

●●
●

●

●

●●
●
●●

●

●●●
●
●
●
●

●
●●●

●

●●
●
● ●

●●

●●●
●

●●●
●●

●

●

●

●● ●

●●
●

●●●●
●

●
●

●●●

●
●

●
●

● ●●●●●
●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●
●●●
●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●
●●●●
●●●
●

x3s
0.11

4.
0

5.
0

6.
0

0.93

8.
2

8.
4

8.
6

8.
8

●

●
●

●

● ●

●

●
●

●

●
●

● ●

●

●
●

●

●●

●●
●●

●

●●

●
●●

●●

●

●
●

●●
●●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●
●●
●●

●

●
●

●●●
●●

●
●

●●
●

●

●●

●

●

●

●●●●

●

●
●

●

●

●

●

●

●

●
●

●●●●●
●●

●● ●●●●●
●●

●● ●●●
●

●
●

●

●●●●

●●
●● ●●

●

● ●

●●

●●

●●●
● ●●

●●● ●●
●●●

●●
●

●
●

●●●

●

●●

●
●

●●
●

●●●

●●

●

●
●

●

●●
●

●

●

●●

●

●

●●●●●●● ●●●●

●

●

●

●

●

●
●

●

●●

●●●●
●

●●

●

●

●●
●
●●

●
●●●

●

●●

●

●

●
●

●

●
●●

●●
●

●

●

●

●

●●
●

●
●

●

●

●

●
●

●
●●●●

●

●●

●
●●
●

●

●●
●

●
●

●

●

●●
●●

●

●●●
●

●●

●●

●●
●● ●

●●●

●

●
●
●
●

●

●●
●

●●
●●

●

●

●● ●●●

●

●

●
●

●

●

● ●

●
●

●

●●●

●

●
●●●●

●

●

●

●●

●● ●
●

●
●●

●

●

●●●●
●●●

●

●

●

●●●

●

●

●●● ●●●●
●●

●
●

●● ●
●
●

●●

●

●

●
●●●●●●●●

●●● ●●●●
●

●
●

●

●

●●
●
●●
●●

●
●

●

●●

●
●

●
●

●

●
●●●●

●

●

●

●●●

●

●●
●●

●●

●●●

●

●●
●

●●

●

●

●

●

●

●

●●

●
●●●

●

●

●

●

●●
●

●

●

●●

●

●
●

●

●●

●

●
●

●

●
●

●●

●

●
●
●

●●

● ●
● ●

●

●●

●
●●

●●

●

●
●

●●
● ●

●

●●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●
●

●

●

●

●
●●

●●
●

●
●

●●●
●●

●
●

●●
●

●

●●

●

●

●

●●●●

●

●
●

●

●

●

●

●

●

●
●

●● ●●●
●●

●●●● ●●●
●●

●●●●●
●

●
●

●

●● ●●

●●
●●●●

●

●●

●●

●●

●●●
●●●

●● ●●●
●●●
●●●

●
●

● ● ●

●

●●

●
●

● ●
●

●●●

●●

●

●
●

●

●●
●

●

●

●●

●

●

●●●●●●● ●●●●

●

●

●

●

●

●
●

●

●●

●● ● ●
●

●●

●

●

●●
●
●●

●
●●●

●

●●

●

●

●
●
●

●
●●

●●
●

●

●

●

●

●●
●

●
●

●

●

●

●
●

●
●●● ●

●

●●

●
●●

●
●

●●
●

●
●

●

●

●●
●●
●

●●●
●

● ●

●●

●●
● ●●

●●●

●

●
●
●
●

●

●●
●

●●
● ●

●

●

●●●●●

●

●

●
●
●

●

●●

●
●

●

●●●

●

●
●●●●

●

●

●

●●

●●●
●

●
●●

●

●

●●●●
● ●●

●

●

●

●● ●

●

●

●●●●●●●
●●

●
●

●●●
●

●
●●

●

●

●
●●●●●●●●
●●● ●●●●

●
●

●
●

●

●●
●

●●
●●

●
●

●

●●

●
●

●
●

●

●
●●●●
●

●

●

●●●

●

●●
● ●

●●

●●●

●

●●
●

●●

●

●

●

●

●

●

●●

●
●●●

●

●

●

●

●●
●

●

●

● ●

●

●
●

●

●●

●

●
●

●

●
●

●●

●

●
●

●

●●

● ●
●●

●

●●

●
●●

●●

●

●
●

●●
●●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●
●●
●●

●

●
●

●● ●
●●

●
●

●●
●

●

●●

●

●

●

●●●●

●

●
●

●

●

●

●

●

●

●
●

●●●●●
●●

●●●●●●●
●●

●●●● ●
●

●
●

●

●●●●

●●
●●●●

●

●●

●●

●●

●●●
●●●

●● ●●●
●●

●
●●

●

●
●

● ● ●

●

●●

●
●

●●
●

●●●

●●

●

●
●

●

●●
●

●

●

●●

●

●

●●●●●●●●●●●

●

●

●

●

●

●
●

●

●●

●● ●●
●

●●

●

●

●●
●
●●
●

●●●

●

● ●

●

●

●
●

●

●
●●

●●
●

●

●

●

●

●●
●

●
●

●

●

●

●
●

●
●●●●

●

●●

●
●●
●

●

●●
●

●
●

●

●

●●
●●
●

●●●
●

●●

●●

●●
● ●●

● ●●

●

●
●
●
●

●

●●
●

●●
●●

●

●

●●● ●●

●

●

●
●

●

●

●●

●
●

●

● ●●

●

●
● ●●●

●

●

●

●●

●●●
●

●
●●
●

●

●●●●
●●●

●

●

●

● ●●

●

●

●●●●●●●
●●

●
●

●●●
●
●
●●

●

●

●
●●●●●●●●

●● ●●●●●
●

●
●

●

●

●●
●
●●

●●

●
●

●

●●

●
●
●

●

●

●
●●●●

●

●

●

●● ●

●

●●
●●

●●

●●●

●

●●
●

●●

●

●

●

●

●

●

●●

●
●●●

●

●

●

●

●●
●

●

●

● ●

●●
●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●
●●●
●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●
●●● ●●

●
x4s

0.25

1.5 2.5 3.5

●

●
●

●

●

●
●

● ●

●●
●

●
●

●

●
●

●

●

●

●●

●

●

●

●●

●
●
●

●
●

●

●●

●
●

●

●
●
●●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●
●

●

●
●

●●
●

●●

●

●

●●

●

●
●

●●

●●

●

●

●●
●
●

●

●●
●●

●

●

●

●

●

●
●

●

●

●

●

●●●
●●

●●●●

●●●
●●

●●●●

●●

●● ●●
●●●

●●
●●●● ●●

●● ●●●●●●●●● ●●
●●

●
●●●●●●●● ●●

●
●

●● ●●

●

● ●●
●●●●

●●● ●
●● ●●

●
●●
●●● ●●●●●●●

●

●●

●
●

●●●●
●●●● ●●●●

●●

●●●
●● ●●

●●●●
●●●●●

●● ●●●
●

●

●●
●●●

●● ●●

●●

●

●

●●●

●●●
●

●●●●●

●●●●●●
● ●●

●●● ●●
●●

●●●●●● ●
●●

●●●●
●●

●
●

●●●
●●●●●●● ●

●● ●●
● ●

●●

●
●

●●

●
● ●
●

●

●
●

●
●

●

●
●●●

●●
●●●●

●●

●●●● ●

●
●●●●

●●●●●
●●●

●

●

●

●

●

●●

●

●●● ●●●●
●●

●● ●●

●
●●●●● ●●

●●
●●●●●●

●●

●

●●●●
●

●● ●

●
●●

●●●
●●

●

●

●

●●
●

●●
●

●●
●●●●

●●●●●

●

●
●●

●●●● ●●●●

●●●
●●

●

●

●
●

●

●

●●

●

●●●

●●●●

●●●

●

●

●●

●

●
●

●

●

●
●

●●

●●
●

●
●

●

●
●

●

●

●

● ●

●

●

●

●●

●
●

●
●
●

●

●●

●
●

●

●
●

●●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●
●

●

●
●

●●
●
●●

●

●

●●

●

●
●

●●

●●

●

●

●●
●

●

●

●●
●●

●

●

●

●

●

●
●

●

●

●

●

●● ●
●●
●●●●

●● ●
●●
●●●●

●●

● ●● ●
● ●●

●●
●● ●●●●

● ●●●●
●●●●● ●●●
●●

●
●● ●●●●●●● ●

●
●

● ●●●

●

●● ●
● ●●●●●●●

● ●●●

●
●●●● ●●●●●●●●

●

●●

●
●

●●●●
●● ● ●●●●●

● ●

●●●
●●●●

●●● ●
●●● ●●

● ●● ●●
●

●

●●
●● ●

● ●● ●

●●

●

●

●● ●

●●●
●

●●● ● ●

●●●●●●
●●●

● ● ●● ●
●●
●●● ●●●●

● ●

●● ●●
● ●

●
●
●●●
●●●● ● ●●●
●●● ●

●●
●●

●
●
● ●

●
●●

●

●

●
●

●
●

●

●
●● ●

●●
●●● ●
● ●

●● ●●●

●
●●●●

●●●●●
● ●●

●

●

●

●

●

● ●

●

●●●●●●●
●●

● ●●●

●
●●●● ●● ●
●●
●●●●●●

●●

●

●●●●
●

● ●●

●
●●
●●●

●●

●

●

●

●●
●
●●

●

●●
●●●●
● ●●●●

●

●
●●
● ● ●●●●●●

●●●
●●

●

●

●
●

●

●

●●

●

●●●

●●●●

●●●

●

●

● ●

4.0 5.0 6.0

●

●
●

●

●

●
●

●●

●●
●

●
●

●

●
●

●

●

●

● ●

●

●

●

●●

●
●
●

●
●

●

●●

●
●

●

●
●

●●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●
●

●

●
●

●●
●

●●

●

●

●●

●

●
●
●●

●●

●

●

●●
●

●

●

●●
●●

●

●

●

●

●

●
●

●

●

●

●

●●●
●●

●●●●

●●●
●●

●●●●

●●

●●●●
●●●

●●
●● ●●●●

●●●●●
●●●●

● ●●●
●●

●
●● ●●●●●●●●

●
●

●●●●

●

●●●
●●●●

●●●●
●●●●

●
●●
●● ●●●●●●●●

●

●●

●
●

●●●●
●●●●●●●●

●●

●●●
●●●●

●●●●
●●●●●

●●●●●
●

●

●●
●●●

●●●●

●●

●

●

●●●

●●●
●

●●●● ●

●●●●●●
●●●
●●●●●
●●

●●●●●●●
●●

●●●●
● ●

●
●

●●●
●●●●●●●●

●●●●
●●

●●

●
●

●●

●
●●

●

●

●
●

●
●

●

●
●●●

●●
●●●●

●●

●●●●●

●
●●●●

●●●●●
●●●

●

●

●

●

●

● ●

●

●●●●●●●
●●

● ●●●

●
●●●●●●●

●●
●●●●●●

●●

●

●●●●
●

● ●●

●
●●

●●●
●●

●

●

●

●●
●

●●
●

●●
●●●●

●●●●●

●

●
●●

●● ●●●●●●

●●●
●●

●

●

●
●

●

●

●●

●

●●●

●●●●

●●●

●

●

● ●

●

●
●

●

●

●
●

● ●

● ●
●

●
●

●

●
●

●

●

●

●●

●

●

●

●●

●
●
●

●
●

●

●●

●
●

●

●
●

●●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●
●

●

●
●

●●
●
●●

●

●

●●

●

●
●

●●

●●

●

●

●●
●

●

●

●●
●●

●

●

●

●

●

●
●

●

●

●

●

●●●
●●

●●●●

●●●
●●

●●●●

●●

●●●●
● ●●

●●
●●●●●●

● ●● ●●●● ●●●●●●
●●
●

●● ●●●●●●● ●

●
●
● ●●●

●

●●●
● ●●●
●● ●●

● ●●●

●
● ●●● ●● ●●●●●●

●

●●

●
●

● ●● ●
● ● ●●●● ●●

●●

● ●●
● ●●●

●●●●
●●●● ●

● ●● ●●
●

●

●●
●●●

● ●● ●

●●

●

●

●● ●

● ●●
●

●●●●●

●● ● ●●●
●●●

● ●●●●
●●

●●● ●●●●
●●

●● ●●
●●

●
●
●● ●
●●●● ● ●●●

●●●●
●●

●●

●
●
● ●

●
●●

●

●

●
●

●
●

●

●
●● ●

●●
●●● ●

● ●

●● ●●●

●
●●●●

●●●●●
●●●

●

●

●

●

●

●●

●

●●●●●●●
●●

●●●●

●
●●●● ●● ●

●●
●●●●●●

●●

●

●●●●
●

●●●

●
●●

● ●●
●●

●

●

●

●●
●

● ●
●

● ●
●●●●

● ●● ●●

●

●
●●

●● ●●●●●●

●●●
●●

●

●

●
●

●

●

●●

●

●●●

●● ●●

●● ●

●

●

●●

6.5 7.5 8.5

6.
5

7.
5

8.
5

●● ●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●
●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●

●●●
●●

x5s

Figure 4: Scatter plots (lower left triangle), QQ plots (diagonal) and absolute values of correla-

tions (upper right triangle) of the variables x∗1, . . . , x
∗
5 (denoted by x1s, . . . , x5s in the plots).

Note that we can re-express this dependent variable in terms of the original features

y∗ = α1 log(weight)− (α1 − α2) log(max power) + α3 log(max torque)

+α4 log(max engine speed)− (α2 − α5) log(cubic capacity). (1.4)

Remarks.

• From (1.4) we see that each considered log-variable receives its own (independent) pa-

rameter α?1 = α1, α
?
2 = −α1 + α2, α

?
3 = α3, α

?
4 = α4 and α?5 = −α2 + α5. Therefore,

transformation (1.2) to the x∗ variables would not be necessary.

• Compared to the original formula (1.1) the number of seats is dropped in formula (1.4),

and on the other hand log(max torque) and log(max engine speed) are added.

To keep comparability with Ingenbleek–Lemaire [14] we use the variables defined in (1.2) and

illustrated in Figure 4, and we set for our cases

x∗ = (x∗1, . . . , x
∗
5)
> ∈ Rq with q = 5.

6

 Electronic copy available at: https://ssrn.com/abstract=3439358

In the sequel of this tutorial we are going to explain several dimension reduction techniques and

clustering methods on this data x∗i ∈ Rq over all available cars i = 1, . . . , n = 475.

1.5 2.0 2.5 3.0 3.5

0.
0

0.
5

1.
0

1.
5

empirical density variable x1s

x1s

em
pi

ric
al

 d
en

si
ty

empirical density
Gaussian approximation

−4.0 −3.5 −3.0 −2.5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

empirical density variable x2s

x2s

em
pi

ric
al

 d
en

si
ty

empirical density
Gaussian approximation

3.5 4.0 4.5 5.0 5.5 6.0 6.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

empirical density variable x3s

x3s

em
pi

ric
al

 d
en

si
ty

empirical density
Gaussian approximation

8.0 8.2 8.4 8.6 8.8

0
1

2
3

4
5

6

empirical density variable x4s

x4s

em
pi

ric
al

 d
en

si
ty

empirical density
Gaussian approximation

6.5 7.0 7.5 8.0 8.5 9.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

empirical density variable x5s

x5s

em
pi

ric
al

 d
en

si
ty

empirical density
Gaussian approximation

Figure 5: Empirical marginal densities of the features x∗1, . . . , x
∗
5 (from left to right) over all

available cars (orange color) and Gaussian approximation (blue color), compare with Figure 4.

In Figure 5 we provide the empirical marginal densities of the features x∗1, . . . , x
∗
5 (from left to

right) over all available cars and we compare it to a Gaussian approximation (this corresponds

to the QQ plots on the diagonal of Figure 4). For components x∗1, x
∗
2, x
∗
3, x
∗
5 the Gaussian

approximation works reasonably well, for component x∗4, log(max engine speed), the Gaussian

approximation does not look reasonable. We are mentioning this because in most subsequent

analysis we are using the (squared) Euclidean distance in the objective function which is the

canonical choice for (multivariate) Gaussian random variables (vectors). Moreover, for studying

multivariate Gaussian distributions we should have Gaussian copulas (dependence structure)

which is not fully justified by the scatter plots in the lower left triangle of Figure 4, because not

all of these scatter plots have an elliptic shape.

2 Principal components analysis

In a nutshell, a PCA aims at reducing the dimension of high dimensional data such that the

reconstruction error relative to the original data is minimized. If applied successfully, it reduces

the dimension of the feature space, and it is particularly useful for (actuarial) regression modeling

because it provides a small number of uncorrelated explanatory variables.

2.1 Standardized design matrix

Assume we have n ∈ N cases in our portfolio described by features (covariates) x∗1, . . . ,x
∗
n ∈ Rq.

These cases provide a raw design matrix X∗ = (x∗1, . . . ,x
∗
n)> ∈ Rn×q. Thus, each row (x∗i)

> of

X∗ describes a single case, and the columns 1 ≤ j ≤ q describe a given component x∗i,j over all

cases 1 ≤ i ≤ n, see (1.2) for the meaning of these components.

Typically, the columns 1 ≤ j ≤ q of the raw design matrix X∗ ∈ Rn×q live on different scales

and they are correlated. We give an analogy in a multivariate Gaussian context: if we choose

x∗i
i.i.d.∼ N (µ,Σ), we may get an empirical distribution with level sets as in Figure 6.

From the observed cases x∗1, . . . ,x
∗
n ∈ Rq we can estimate the sample means, variances6 and

6On purpose, we do not choose the unbiased versions of the variance estimates, here.

7

 Electronic copy available at: https://ssrn.com/abstract=3439358

−20 −10 0 10 20

−
20

−
10

0
10

20

level sets

component 1

co
m

po
ne

nt
 2

●

Figure 6: Level sets of a two dimensional Gaussian distribution with general mean vector µ ∈
Rq and symmetric and positive definite covariance matrix Σ ∈ Rq×q illustrating a potential

distribution of the cases x∗i (here we set q = 2).

covariances of the columns of X∗. These are for 1 ≤ j, l ≤ q given by

µ̂j =
1

n

n∑
i=1

x∗i,j , (2.1)

σ̂2j =
1

n

n∑
i=1

(
x∗i,j − µ̂j

)2
, (2.2)

σ̂j,l =
1

n

n∑
i=1

(
x∗i,j − µ̂j

) (
x∗i,l − µ̂l

)
. (2.3)

Since all further derivations should not depend on translations and scales we standardize the

raw design matrix X∗ (by column means and column standard deviations). We first center the

columns of the raw design matrix X∗ by subtracting (µ̂1, . . . , µ̂q) on each row; in the multivariate

Gaussian case N (µ,Σ) this corresponds to setting mean vector µ = 0.

After this centering the columns of the resulting design matrix may still live on different scales,

since the components of the cases may be measured in different units. Different scales are

reflected by sample variances σ̂2j having different magnitudes; in the multivariate Gaussian case

N (0,Σ) this corresponds to a covariance matrix Σ ∈ Rq×q which is not constant on its diagonal

entries (Σj,j)1≤j≤q.

Since all further derivations should not depend on the different units of the components we scale

all centered columns of the raw design matrix by the sample standard deviations (σ̂1, . . . , σ̂q);

in the multivariate Gaussian case this corresponds to transforming the covariance matrix Σ to

its correlation matrix.

The resulting standardized design matrix is denoted by X ∈ Rn×q. Its columns have sample mean

zero and sample variance 1. We denote its (standardized) entries by X = (xi,j)1≤i≤n,1≤j≤q ∈
Rn×q. In the standardized case, formula (2.3) relates to the sample correlations between the

columns of X. Our goal will be to explore these correlations. The following convention is used

throughout.

8

 Electronic copy available at: https://ssrn.com/abstract=3439358

Convention 2.1 We always assume that X ∈ Rn×q is standardized and we simply call it design

matrix. The (transposed) rows of X are denoted by xi ∈ Rq, 1 ≤ i ≤ n, and we assume that X

has full rank q ≤ n. The columns of X are labeled by x1, . . . , xq and they denote the components

of x ∈ Rq, which are standardized versions of (1.2).

The set (the portfolio) of all available cases is denoted by X = {x1, . . . ,xn} ⊂ Rq.

x1 x2 x3 x4 x5
x1 1.0000 −0.7484 −0.8173 −0.3074 −0.6690

x2 1.0000 0.4552 0.6100 0.1531

x3 1.0000 −0.1076 0.9317

x4 1.0000 −0.2533

x5 1.0000

Table 1: Sample correlations between the columns of X, x1, . . . , x5 denote the standardized

components of (1.2).

We provide the sample correlations between the columns of the design matrix X (for our exam-

ple) in Table 1; these are in line with the absolute values provided in the upper right triangle

of Figure 4. We observe high (linear) correlations, and the PCA discussed in the next section

tries to explain these correlations by finding an optimal coordinate system.

2.2 Principal components

By assumption, the design matrix X has full rank q ≤ n. This means that we can find q linearly

independent rows (cases xi ∈ X) that may serve as a basis that spans the whole space Rq. PCA

determines a different basis, namely, it provides an orthonormal basis v1, . . . ,vq ∈ Rq such that

v1 explains the direction of the biggest heterogeneity in X, v2 the direction of the second biggest

heterogeneity orthogonal to v1, etc.

2.2.1 Methodology

The first basis/weight vector v1 ∈ Rq is determined by

v1 = arg max
‖w‖2=1

‖Xw‖22 = arg max
w>w=1

(
w>X>Xw

)
. (2.4)

The second basis/weight vector v2 ∈ Rq is determined by

v2 = arg max
‖w‖2=1

‖Xw‖22 subject to 〈v1,w〉 = 0, (2.5)

and the j-th basis/weight vector vj ∈ Rq is determined by

vj = arg max
‖w‖2=1

‖Xw‖22 subject to 〈v`,w〉 = 0 for all 1 ≤ ` ≤ j − 1. (2.6)

9

 Electronic copy available at: https://ssrn.com/abstract=3439358

Optimization problems (2.4)-(2.6) are convex with convex constraints, i.e. they can be solved

recursively using the method of Lagrange. By assumption, the symmetric matrix A = X>X is

positive definite, and the orthonormal basis v1, . . . ,vq ∈ Rq is simply given by the eigenvectors

of A (appropriately ordered).

There is a second way of obtaining this orthonormal basis which is associated with dimension

reduction, see Section 14.5.1 in Hastie et al. [11]. Namely, there exist an orthogonal matrix

U ∈ Rn×q (with U>U = 1q), an orthogonal matrix V ∈ Rq×q (with V >V = 1q), and a diagonal

matrix Λ = diag(λ1, . . . , λq) ∈ Rq×q with singular values λ1 ≥ λ2 ≥ . . . ≥ λq ≥ 0 such that we

have singular value decomposition (SVD)

X = UΛV >. (2.7)

This SVD can be found by the algorithm of Golub–Van Loan [10]. The orthogonal matrix U is

called left singular matrix of X and the orthogonal matrix V is called right singular matrix of

X. A simple calculation using decomposition (2.7) shows

V >X>XV = V >V ΛU>UΛV >V = Λ2 = diag(λ21, . . . , λ
2
q).

Therefore, (λ2j)1≤j≤q are the eigenvalues of A = X>X, and the column vectors of V give the

orthonormal basis v1, . . . ,vq (eigenvectors of A).

The principal components are obtained by the column vectors of

XV = UΛ = Udiag(λ1, . . . , λq) ∈ Rn×q. (2.8)

This motivates us to define the following matrices of ranks 1 ≤ p ≤ q, see (2.7),

Xp = Udiag(λ1, . . . , λp, 0, . . . , 0)V > ∈ Rn×q. (2.9)

These rank p matrices Xp have the property that they minimize the total squared reconstruction

error (Frobenius norm) relative to X among all rank p matrices, that is,

Xp = arg min
B∈Rn×q

‖X−B‖F subject to rank(B) ≤ p, (2.10)

where ‖ · ‖F is the Frobenius norm given by ‖A‖2F =
∑

i,j a
2
i,j for a matrix A = (ai,j)i,j . In other

words, Xp is the best rank p approximation to X keeping as much variability as possible of X

through an optimal choice of p ≤ q orthonormal basis vectors v1, . . . ,vp. This also means that

we have replaced a q dimensional representation xi ∈ X of the cases by a p dimensional one

such that we receive a minimal reconstruction error. This is illustrated in the example in the

next section in more detail. We close with remarks.

Remarks.

• We always use q for the dimension of the original features xi ∈ X ⊂ Rq and p ≤ q for the

lower dimensional approximations denoted by yi. We denote Y = {y1, . . . ,yn} ⊂ Rp; this

will be described in detail below, see for example (2.12) for p = 2.

• The PCA minimizes a square loss function which is most appropriate in a Gaussian context.

If feature components are obviously non-Gaussian they need pre-processing by applying

a transformation. For instance, if x∗1 > 0 has outliers, we may consider the logarithm of

this component before standardizing to x1, or more generally we may use “Tukey’s first

aid transformations”, see Chapter 4 in Stahel [29].

10

 Electronic copy available at: https://ssrn.com/abstract=3439358

2.2.2 Example, revisited

We come back to the data presented in Listing 1. In Listing 2 we provide the relevant code to

perform the PCA in R.

Listing 2: R code for PCA using svd

1 dat2 <- dat

2 dat2$x1 <- log(dat2$weight/dat2$max_power)

3 dat2$x2 <- log(dat2$max_power/dat2$cubic_capacity)

4 dat2$x3 <- log(dat2$max_torque)

5 dat2$x4 <- log(dat2$max_engine_speed)

6 dat2$x5 <- log(dat2$cubic_capacity)

7 dat2 <- dat2[, c("x1","x2","x3","x4","x5")] # raw design matrix

8

9 # normalization of raw design matrix

10 X <- dat2 -colMeans(dat2)[col(dat2)] # centering of columns

11 X <- X/sqrt(colMeans(X^2))[col(X)] # normalization of columns

12

13 # singular value decomposition

14 SVD <- svd(as.matrix(X))

15 SVD$d # singular values

16 dat2$v1 <- X %*% SVD$v [,1] # 1st principal components

17 dat2$v2 <- X %*% SVD$v [,2] # 2nd principal components

Alternatively, we can also use the R command princomp instead of svd, see Listing 3.7

Listing 3: R code for PCA using princomp

1 pca <- princomp(as.matrix(X), cor=TRUE)

2 pca$loadings

3 summary(pca)

principal singular scaled eigen- proportion λ2p/n of total

component p values λp values λ2p/n increment cumulative

1 37.53 2.966 59% 59%

2 28.07 1.659 33% 92%

3 11.48 0.277 6% 98%

4 6.78 0.088 2% 100%

5 2.12 0.009 0% 100%

Table 2: PCA results from svd and princomp, respectively.

The singular values λp and the scaled eigenvalues λ2p/n, 1 ≤ p ≤ q, are presented in Table 2. We

observe that the first two principal components explain 92% of the total variance,8 thus, most

of the variability in the columns can be explained by the first two basis vectors v1 and v2. This

is in line with Table 2 of Ingenbleek-Lemaire [14], though we use slightly different data, here.

The principal component values of cases i = 1, . . . , n are obtained by

xi ∈ Rq 7→ yi,j = 〈vj ,xi〉 = vj,1xi,1 + . . .+ vj,qxi,q, (2.11)

7Remark that the R functions svd and princomp may provide opposite directions for the weight vectors.
8In fact, principal components explain correlations and not variances here because we have standardized.

11

 Electronic copy available at: https://ssrn.com/abstract=3439358

for j = 1, . . . , q = 5. We plot these values (yi,j)1≤i≤n,1≤j≤q in Figure 7. The diagonal gives

●●
●●●●

●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●
●●●
●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●
●●●●

●●●
●

Comp.1

−2 0 2 4 6 −1.5 −0.5 0.5

−
4

0
2

4
6

−
2

0
2

4
6

●

●
●

●

●
●

●

●
●
●

●●

●
●

●

●● ●

●●

●
●

●

●

●

●●

●
●
●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●●●

●

●

●●

●
●
●
●
●

●●●●

●●

●
●

●

●●
●●

●

●

●

●

●

●

●●

●

●
●

●●●●●●●●●●●●●●●●●●
●●

●
●

●
●

●

●● ●●
●● ●●●●

●

●●
●●
●●

●●● ●●●●●
●

●●

●●●
●●●

●
●

● ● ●

●

●●

●

●

●●
●

●●●
●●

●
●

●
●

●●●
●
●

●●

●

●
●●●●●●

●

●●

●
●●

●

●

●

●

●
●
●

●●
●● ●

●

●

●●

●
●

●●
●
●●

●

●●●●
●

●

●

●

●● ●

●
●●

●●
●

●

●

●

●

●●
●

●
●

●

●

●

●
● ●

●●●
●

●

●●

●
●●
● ●

●●
●

●
●

●●

●● ●●●
●●●

●
●●

●●
●● ●

●●

● ●●

●

●●●●
●

●●
●

●●●●
●

●
●●● ●●

●

●
●

●
●

●
●●

●
●

●

●●●

●

●
● ●●●

●

●
●

●●

●●
●

●

●
●●

●

●
●●●●● ●●

●

●

●

●

●

● ●●

●●●●●●●●●
●

●

●●
●●●●
●

●
●

●●●●●●
●●●

●●

●

●●●●●
●

●

●●
●●●

●●
●●

●

●

●

●●
●●

●
●●

●
●●●●

●

●

●
●●

●●
●● ●

●

●●

●●●

● ●●●

●●

●

●

●

●

●

●

●● ●
●●●

●
●

●
●

●●
●

●

●

●
●

●●
●●●●
●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●
●●●
●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●● ●●●●● ●● ●●●●
Comp.2

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●●

●●

●

●●

●

●
●●

●

●

●

●

●
●●
●
●

●

●

●

● ●
●●
●

●●
●

●

●
●

●

●

●●
●●
●
●
●

●

●●

●

●
●

●
●●●

●

●

●
●

●

●
●

●
●

●●

●

●

●

●

●
● ●

● ●

●
●

●

●

●
●●

●●

●●
●

●

●
●●

●●

●●●●
●

●
●

●

●
●●

●●

●●

●●

●●

●
●●

●●

●●

●●●

●

●●
●●

●

●●

●●
●

●●
●

●
●

●
●

● ●●●

●

●

●

●● ●
●●

●●

●

●
● ●●●

● ●

●●●

●●
●●●●●●

●

●●

●
●●

●

●

●

●

●●●●
●

●●
●

●

●

●
●

●

●
●
●

●●
●

●

●●●

●

●
● ●● ●

●
●●

●
●●●

●
● ●● ●

●

●●●
●

●

●

●

●
●

●
●●●

● ●●●

●
●
●
●

●

●
●●

●
●

●

●

●●
●●

● ●●
●

●
●

●

●●
●●

●

●

●

● ●●

●
●
●
●
●● ●

●
●●

●

●
●●

●

●
●

● ●●
●●

●
●

●

●

●
● ●

●

●

●●●

●

●● ●
●
●

●
●●●● ●

●

●
●

●●●●

●

●●●●

●

●●

●

●
●

●

●

●

●

●
●

●●

●●

●●

●●●

●

●●

●
●

●

●● ●● ●

●●
●●●●●●

●●

●

●●●●

●●

●

●

●

●●
●●●
●●

●

●

●

●●

●
●●
●

●

●
●●●●●

●
●

●●

●

●

●●
●
●

●
●

●●
●

●

●●
●

●

● ●

●
●

●

●

●

●●

●

●●
●

●

●

●

●●
●
●●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●● ●

●

●

●

●

●●

●●

●

●●

●

●
● ●

●

●

●

●

●
● ●
●

●

●

●

●

● ●
●●

●

●●
●

●

●
●

●

●

● ●
●●
●
●

●

●

●●

●

●
●

●
●●

●

●

●

●
●

●

●
●

●
●

●●

●

●

●

●

●
●●

● ●

●
●

●

●

●
●●

●●

●●
●

●

●
●●

●●

●●●●
●

●
●

●

●
●●
●●

●●

●●

●●

●
●●

●●

●●

●●●

●

●●
●●

●

●●

●●
●

●●
●

●
●

●
●

●● ●●

●

●

●

●●
●
●●

●●

●

●
●● ●●

●●

● ●●

● ●
●●●●●●

●

●●

●
●●

●

●

●

●

●●● ●
●

●●
●

●

●

●
●

●

●
●

●

●●
●

●

●●●

●

●
●● ●●

●
● ●

●
●●●
●

●● ●●
●

●●●
●

●

●

●

●
●

●
●●●

●● ●●

●
●
●
●

●

●
●●

●
●

●

●

●●
●●
●●●

●

●
●

●

●●
●●

●

●

●

●●●

●
●

●
●

●●●
●

● ●
●

●
●●

●

●
●

●●●
● ●
●

●
●

●

●
●●

●

●

●●●

●

●●●
●
●

●
●● ●●●
●

●
●

●●●●

●

●●●●

●

●●

●

●
●

●

●

●

●

●
●

●●

●●

●●

●● ●

●

●●

●
●

●

●●● ●●

●●
●●●●●●

●●

●

●●●●

● ●

●

●

●

●●
●●●
●●

●

●

●

●●

●
●●
●

●

●
●●●●●

●
●

●●

●

●

●●
●

●

●
●

●●
●

●

●●
●

●

●●

●
●

●

●

●

●●

●

●●
●

●

●

●

● ●
●

●● ●

●

● ●●● ●●●●●●
●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●
●●●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●
●●● ●●

●
Comp.3

−
2

−
1

0
1

−
1.

5
−

0.
5

0.
5

●

●

●
●

●●
●●

●
●

●
●

●

●
●

●

●
●

●

●

● ●
●

●

●

●

●

●
●● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●
●

●

●●
●
●

●

●●

●

●

●

●

●

●

●

●●

●●
●
●

●●●

●

●

●●

●●●

●

● ●●●

●

● ●
●

●

●
●

●
●●

●●

●●

●●
●●●

●●

●●

●●

● ●● ●

● ●

●

●●
●●

●●
●●● ●

●

●●●●

●●
● ●
●●

●●
●

●●

●●●

●
●

●●
●

●
●

● ●●●

●

●

●
●● ●●●●

●
●

●
● ●●●● ●
●

●

●

●

●
●
●
●
●

●
●

●

●
●

●
●●●●

●
●●●

●
●●

●● ●

●

●●

●

●
●●

●

●
●●

●●●●

●● ●
●●
●● ●
●

●●
●●

●
●

●●
●
●●

●
●

●● ●
●●●

●
●●
●

●
●

●●●●●
●

●●●
● ●●●●

●●
●●

●
●●●

●
●

●
●● ●● ●

●

●

●
●● ●

●●●●
● ●●●
●

●

●
●

●
●

●

●

● ●
● ●

●

●●●

●
●●

●
●

●

●
●● ●

●●

●●●
●●●●● ●●●

●

●
●●

● ●
●●
●●
●

●●

●

●

●

●●
●

●
●

●
●●

●●
●●
●●

●
●●●

●
●
●
●

● ●● ●
●●●●
●●●●

●●
●

●●●●●
● ●●

●
●●

●
●●●● ● ●

●

●● ●
●
●●

●
●
●●
●
●
●

●

●
●●

●
●

●● ●
● ●

●●●
●

● ●
●●

●●

●

●

●
●

●

●

●
●

●

●●●

●
●

●
●

●●
●

●

●

●
●

●

●

●
●

●●
● ●

●
●

●
●

●

●
●

●

●
●

●

●

●●
●

●

●

●

●

●
●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●
●

●

●●
●
●

●

●●

●

●

●

●

●

●

●

●●

●●
●
●

●● ●

●

●

●●

●●●

●

● ●● ●

●

● ●
●

●

●
●
●
●●
●●

●●

●●●●●
●●

●●

●●

●●●●

●●

●

●●
●●
●●
●● ●●

●

●●●●

●●
●●●●

●●
●

●●

●●●

●
●

● ●
●

●
●

●● ●●

●

●

●
●●●●● ●●

●
●

●● ●●●●
●

●

●

●

●
●
●
●
●

●
●

●

●
●

●
●●● ●

●
●●●

●
●●

●●●

●

●●

●

●
● ●

●

●
●●

● ●●●

●●●
● ●
●●●

●

●●
●●

●
●

● ●
●

●●

●
●

● ●●
●●●

●
●●
●

●
●

●●●●●●
● ●●

●●● ●●

●●
●●
●

●●●
●

●
●

●●●●●
●

●

●
●●●
●●●●

●●●●
●

●

●
●

●
●

●

●

●●
●●

●

●●●

●
●●

●
●

●

●
●●●

●●

●●●
● ●● ●●●●●

●

●
●●

●●
●●

●●
●

●●

●

●

●

● ●●
●
●

●
●●
●●

●●
●●

●
● ●●

●
●
●
●
●● ●●

●●●●
●●●●

●●
●

●●●●●
●● ●
●

●●

●
●● ●●●●

●

●●●
●

● ●●
●

●●
●
●
●

●

●
●●

●
●

●●●
●●

● ●●
●

●●●●

●●

●

●

●
●

●

●

●
●

●

●●●

●
●

●
●

●●
●

●

●

●
●

●

●

●
●

●●
●●

●
●

●
●

●

●
●

●

●
●

●

●

●●
●

●

●

●

●

●
● ●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●
●

●

● ●
●

●

●

●●

●

●

●

●

●

●

●

●●

●●●
●

●●●

●

●

●●

●●●

●

● ●●●

●

●●
●

●

●
●

●
●●

●●

●●

● ●
● ●●

●●

●●

●●

●●●●

● ●

●

●●
●●

●●
●●● ●

●

●●●●

●●
●●
●●

●●
●

●●

●●●

●
●

● ●
●

●
●

●●●●

●

●

●
●●● ●●●●

●
●

●●●●●●
●
●

●

●

●
●
●

●
●

●
●

●

●
●

●
●● ●●

●
● ●●

●
●●

●●●

●

● ●

●

●
●●

●

●
●●

● ●●●

● ●●
●●●●●
●

●●
●●

●
●
●●●

●●

●
●

●● ●
● ●●

●
●●
●

●
●
●● ● ●●●

●●●
● ●●●●

●●
●●

●
●●●
●

●
●

●● ●●
●

●

●

●
●● ●
●●●●

●●●●
●

●

●
●
●

●
●

●

●●
●●

●

●●●

●
●●

●
●

●

●
●● ●

●●

●●●
● ●●●●●● ●

●

●
●●
● ●

●●
●●

●
●●

●

●

●

● ●●
●

●

●
●●

●●
●●

●●
●

● ●●

●
●

●
●
●●●●

●●●●
●●●●

●●
●

●●●● ●
●● ●

●
●●

●
●● ●● ●●

●

●● ●
●
● ●●

●
●●
●

●
●

●

●
●●

●
●

●● ●
●●

● ●●
●

● ●
●●

● ●

●

●

●
●

●

●

●
●

●

●●●

●
●

●
●

●●
●

●

●

●
●

● ● ●●●●
●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●

●●●
●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●

●●●●●●●
●

Comp.4

−4 0 2 4 6

●

●●

●

●

● ●
●●

●

●

●●

●

● ●

●

●
●●

●

●

●

●

●●

●

●
●
●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●●

● ●
●
●

●●●
●

●

●

●

●

●
●

●

●
●
●
●

●

●

●
●

●

●●

●

●

●
●

●

●
●
●

●

●

●

●●
●

●

●
●●

●

●● ●

●

●

●
●

●

●

●
●●

●●
●●

●

●

●
●●

●●
●●

●● ● ●● ●

● ●●

●● ●●

●●

●●

● ●●
●●
●● ●●

●

●

●●
●●

●

●●
●●

●

●●

●

● ●●
● ●

●
●●

●

●

●

●

●
●

●●●●
●

●● ●
●●

●

●
●

●●

●●
●●

●●
●●

●

●●

●

●

●●●

●●●

●

●

●●

●

●

●
●

●●

●

●

●●

●

●
●
●

●

●
●
●

●

●

●
●

●
●

●

●

●
●
●

●●

●

●
●

●
●●
●

●●

●

●

●
●

●● ●

●●●

●

●

●●●●●

●

●●●

●

●

●●

●●
●

●

●
●

●●
●●

●
●●

● ●
●

●
●

●
●

●
● ●

●
●●
●

●
●●

●

●
●

●
●●●

●

●

●

●●
●● ●

●●
● ●●

●●

●

●
●●

●

●
●

●●
● ●●●

●●

●
●●●

●
●●●

●

●●●●

●

●●

●

●
●

●

●

●

●

●

●

●●

●●

●●
●●●

●●●●
●
●
●

●
●

●
●

●●
●●●

●●●

●● ●●
●
●
●
●● ●●●

●●
●
●●

●● ●

●
●

●●
●

●
●

●●●

●

●

●

●
●

●●

●
● ●

●

●

●

●

●

●

●
●
●

●
●

●●●

●

●

●

●
●

●

● ●
●
● ●

●●●●
●

●
●
●●

●

●●
● ●

●

●●

●

●

●●
●●

●

●

●●

●

● ●

●

●
●●

●

●

●

●

● ●

●

●
●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●●

● ●
●
●

● ●●
●

●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●●
●

●

●
●●

●

● ●●

●

●

●
●

●

●

●
●●

●●
●●

●

●

●
●●

●●
●●

●●●●●●

●●●

●●●●

●●

●●

●●●
●●

●●●●
●

●

●●
●●

●

●●
●●

●

●●

●

●● ●
●●

●
●●

●

●

●

●

●
●

●● ●●
●

●●●
●●

●

●
●

●●

● ●
●●

●●
●●

●

●●

●

●

●● ●

● ●●

●

●

●●

●

●

●
●

●●

●

●

● ●

●

●
●

●

●

●
●
●

●

●

●
●

●
●

●

●

●
●
●

●●

●

●
●

●
● ●

●
●●

●

●

●
●

●●●

●●●

●

●

●●●●●

●

● ●●

●

●

● ●

●●
●
●

●
●

●●
● ●

●
●●

●●
●

●
●

●
●
●
●●
●

●●
●

●
●●

●

●
●
●

●● ●

●

●

●

●●
● ●●

●●
●●●

●●

●

●
●●

●

●
●
●●
●● ●●

●●

●
●●●

●
●●●

●

●●●●

●

●●

●

●
●

●

●

●

●

●

●

●●

●●

●●
●● ●
● ●●●

●
●
●

●
●

●
●

●●
●●●

●●●

●● ●●
●
●
●
● ●● ●●
●●
●

●●

●●●

●
●

●●
●

●
●

●●
●

●

●

●

●
●

● ●

●
● ●

●

●

●

●

●

●

●
●

●

●
●

●●●

●

●

●

●
●

●

●●
●
●●

●●● ●
●

●
●

●●

●

● ●
●●

−2 −1 0 1

●

● ●

●

●

● ●
● ●

●

●

●●

●

●●

●

●
●●

●

●

●

●

●●

●

●
●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

● ●

●●
●
●
●●●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●●
●

●

●
●●

●

●●●

●

●

●
●

●

●

●
●●

●●
●●

●

●

●
●●

●●
●●
●●●●●●

● ●●

●● ●●

●●

●●

● ●●
●●

●● ●●
●

●

●●
●●

●

●●
●●

●

●●

●

●● ●
●●

●
●●

●

●

●

●

●
●

●●●●
●

● ●●
●●

●

●
●
●●

●●
●●

●●
●●

●

●●

●

●

● ●●

●● ●

●

●

●●

●

●

●
●

● ●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●
●●

●

●
●
●
●●

●
●●

●

●

●
●

●●●

●●●

●

●

●● ● ●●

●

●●●

●

●

●●

● ●
●

●

●
●
●●

● ●

●
●●

● ●
●

●
●

●
●
●

● ●
●

●●
●

●
●●
●

●
●

●
●●●

●

●

●

●●
●●●
●●

● ●●
●●

●

●
●●

●

●
●
●●
●● ●●

●●

●
● ●●

●
●●●

●

●●●●

●

●●

●

●
●

●

●

●

●

●

●

●●

●●

●●
●●●

● ●●●
●

●
●

●
●

●
●

●●
●●●

●●●

●● ●●
●
●

●
●●● ●●

●●
●
●●

●● ●

●
●

●●
●

●
●

●● ●

●

●

●

●
●
●●

●
● ●

●

●

●

●

●

●

●
●
●

●
●

●●●

●

●

●

●
●

●

● ●
●
● ●

●●● ●
●

●
●
●●

●

●●
●●

●

●●

●

●

●●
● ●

●

●

●●

●

●●

●

●
●●

●

●

●

●

● ●

●

●
●
●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

● ●

●●
●

●
● ●●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●●
●

●

●
●●

●

●●●

●

●

●
●

●

●

●
●●

●●
●●

●

●

●
●●

●●
●●

●●●●●●

●● ●

●●●●

●●

●●

●● ●
●●
●●●●

●

●

●●
●●

●

●●
●●

●

● ●

●

●●●
●●

●
●●

●

●

●

●

●
●

●●●●
●

●●●
●●

●

●
●

● ●

● ●
●●

●●
●●

●

●●

●

●

●●●

●●●

●

●

●●

●

●

●
●

●●

●

●

●●

●

●
●

●

●

●
●
●

●

●

●
●
●

●

●

●

●
●

●
●●

●

●
●
●

●●
●

●●

●

●

●
●
●●●

●●●

●

●

●●●●●

●

●●●

●

●

●●

● ●
●

●

●
●

●●
●●

●
●●

●●
●

●
●

●
●

●
●●

●
●●
●

●
●●
●

●
●

●
●● ●

●

●

●

●●
● ●●

●●
●●●

●●

●

●
●●

●

●
●

●●
●●●●

●●

●
●● ●

●
●●●

●

●●●●

●

●●

●

●
●

●

●

●

●

●

●

●●

●●

●●
●●●

●●
● ●
●

●
●

●
●
●

●

●●
●●●

●●●

●●● ●
●
●
●

●●●●●
●●

●
●●

●●●

●
●

●●
●

●
●

●●●

●

●

●

●
●

●●

●
●●

●

●

●

●

●

●

●
●
●

●
●

●●●

●

●

●

●
●

●

● ●
●

●●

●●●●
●

●
●

●●

●

●●
●●

−0.4 0.0 0.4

−
0.

4
0.

0
0.

4

●●
●●●●
●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●
●●●
●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●

●●●●
●

Comp.5

Figure 7: Scatter plots (lower left triangle) and QQ plots (diagonal) of the principal compo-

nent values of all n = 475 cases; the upper right triangle is empty because weight vectors are

orthogonal by construction.

the QQ plots against the Gaussian distribution. In particular, the second component values

(yi,2)1≤i≤n question a Gaussian assumption. Since these values are uncorrelated (by construc-

tion) between components 1 ≤ j ≤ q we expect a copula similar to independence, see scatter

plots in the lower left triangle of Figure 7.

Using the first basis vector v1 we define the rank 1 approximation X1 to X. This first basis

vector defines the regression equation (still in the standardized version without ∗), see also (2.11),

x ∈ Rq 7→ y1 = 〈v1,x〉 = −0.558x1 + 0.412x2 + 0.539x3 + 0.126x4 + 0.461x5.

If we transform this back to the original scale (1.3), we need to consider for 1 ≤ l ≤ q

αlx
∗
l = αl

(
σ̂l
x∗l − µ̂l
σ̂l

+ µ̂l

)
= αlσ̂lxl + αlµ̂l

!
= v1,lxl +

v1,l
σ̂l
µ̂l.

This provides for αl = v1,l/σ̂l, see also (1.3),

(α1, . . . , α5) = (−1.9423, 1.8107, 1.2703, 1.2341, 1.3165).

12

 Electronic copy available at: https://ssrn.com/abstract=3439358

In view of (1.4) this provides (we scale with 1/α1)

y∗

α1
= log(weight)− 1.93 · log(max power)− 0.65 · log(max torque)

−0.64 · log(max engine speed) + 0.25 · log(cubic capacity).

Comparing this to the expert choice (1.1), the first principal component provides a heavier

punishment to max power, exactly the same relief to cubic capacity, and some punishment

terms are added on max torque and max engine speed.

The second principal component value is determined by, see also (2.11),

x ∈ Rq 7→ y2 = 〈v2,x〉 = 0.103x1 − 0.482x2 + 0.268x3 − 0.705x4 + 0.434x5.

This allows us to illustrate all cars along the first two principal component axis

X 7→ (y1, . . . ,yn)>
def.
= (Xv1,Xv2) ∈ Rn×2, (2.12)

which exactly corresponds to the first two columns of XV , see (2.8), and where we set yi =

(yi,1, yi,2)
> = (〈v1,xi〉, 〈v2,xi〉)> ∈ Y ⊂ Rp=2, for i = 1, . . . , n. In fact, this exactly corresponds

to the first scatter plot in the lower left triangle of Figure 7. In Figure 8 (lhs) we again plot these

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●● ●●

●●

●
●

●
●● ●●

●●

●●

●

●

●

●

●

●●
●●

●● ●●

●●

●

●●

●●

●●

●●
● ●

●●
●●

●

●●

●
●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●● ●●●●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

● ● ●

●

●

●

●

●

●

●
●

●

●
●

●

●● ●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●
●

●
●

●
●

●

●

●

●

●

●●
●●

●

●●
●

●

●

●

●●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●
●

●
●

●

●

●

●●

●
●

●

●

●

●●

●

●

● ●
●●

●

●●

●

●

●

●

●

●
●

●

●
●

●

● ●
●

●

●●

●

●

●●

●

●
●

●
●

●

●

● ●●

●●●

●●●

●●

●

●●●●
●

●

●

●
●

●●

●

●●

●●

●

●

●

●●

●

●

●

●
●

●

● ●● ●

●

●

●

●
●

●●

● ●
●

●

●
●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

principal components analysis

1st principal component

2n
d

pr
in

ci
pa

l c
om

po
ne

nt

●

●●
●

●

●

●

●

●●●
●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●
●●

●●
●

●

●

●
●● ●●

●●

●●
● ●

●●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●●●

●●

●

●

●

●

●●●

●

●●

●

●

●● ●●●●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

● ●

●

●

●

●

●●

●●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
●●

●

●●

●

●

●

●

●●
●

●

●●

●●●

●●●

●
●●

●

●

●
●

●

●

●

●

●
●

●
●

●

●
●●

●

●●

●

●●
●

●

●

● ●

●

●

●
●

●●

●

● ●

●
●

●

●

●

●

●

●
●

●

●

●

●●●●

●
●

●

●
●

●

●

●
●

●

●

●

●

●● ●●●●

●

●●

●

●

●
●

●

●

●
●

●

●

●
●●●

●

●

●

●●
●

●●

●

●

●

●

tau>=21
17<=tau<21
tau<17 (sports car)

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

1st principal component

2n
d

pr
in

ci
pa

l c
om

po
ne

nt

1

2

3

4

5

6

7

8

9

10

1112

13

14

15

1617
18

19

20

21

22

23

24

25

2627

28

29

30

31

32

33

34
35

36

37

38

39

40

4142

43

44

45

46

47

48

49

50

51
52

53

54

55

56

57

58

59

60

61

62

6364

65

66
67

68

69

70
71

72

73

74

75

76

77
78

7980

81

82

83

84

85

8687

88
89

90

91

92

93

94

95

9697

98

99

100

101
102

103 104105 106107
108109

110
111

112 113114 115116
117118

119120

121

122

123

124

125

126127
128129

130131 132133

134135

136

137138

139140

141142

143144
145 146

147148149150

151

152153

154
155

156

157
158

159

160

161

162 163
164

165

166167

168

169

170

171

172

173174175

176177

178

179

180

181

182183

184

185

186

187188

189

190

191192193194195196

197

198199

200

201202

203

204

205

206

207

208

209

210
211

212213 214

215

216

217
218

219

220

221
222

223

224
225

226

227228229

230

231

232

233

234

235

236
237

238

239
240

241242

243

244

245

246

247

248249

250

251

252

253

254

255

256

257

258

259260261

262

263

264265

266

267
268

269
270

271
272

273

274

275

276

277

278279
280281

282

283284
285

286

287
288

289290

291
292 293

294
295

296
297298

299

300
301
302

303

304

305
306

307

308
309310

311

312

313

314315

316
317 318

319

320

321

322

323

324

325
326

327

328

329

330
331332

333

334

335 336337
338

339

340

341

342343

344
345

346

347

348

349350

351

352

353354
355356

357

358359

360

361

362

363

364

365
366

367

368369370
371372373374

375376

377

378

379380

381

382
383

384
385

386

387

388 389390
391392393

394395396

397398

399

400401402403
404

405

406

407408

409410

411

412413

414415

416

417

418

419420

421

422

423

424
425

426

427428429430

431

432

433

434
435

436437

438439
440

441

442
443

444
445

446

447
448449

450

451

452

453

454

455

456

457

458

459460

461

462463464

465

466

467

468

469
470

471

472

473

474

475

−0.5 0.0 0.5

−
0.

5
0.

0
0.

5

x1

x2

x3

x4

x5

Figure 8: (lhs) First two principal components with red color for sports car τ < 17, green color

for cars with τ ∈ [17, 21), the remaining cars τ ≥ 21 are in blue color; (rhs) biplot of the first

two principal component values yi (on the primary axis) and the loading vectors (v1,`, v2,`)
> (on

the secondary axis).

first two principal components yi ∈ Y ⊂ R2 of all cars i = 1, . . . , n = 475, but in different colors.

In red color we illustrate the sports car with τ < 17, in green color the cars with τ ∈ [17, 21), and

in blue color the cars with τ ≥ 21. We observe that the first two principal components explain

the expert choice of a sports car fairly well because there seems to be a hyperplane separation

between the two types of cars.

Importantly (and interestingly), Figure 8 (lhs) provides a dimension reduction from Rq to R2

because each car xi ∈ X is represented by a point yi = (v1,v2)
>xi ∈ Y ⊂ Rp=2 in Figure 8, see

(2.12). This is the core topic of this tutorial which is going to be discussed in more detail below.

13

 Electronic copy available at: https://ssrn.com/abstract=3439358

Finally, Figure 8 (rhs) provides a biplot which simultaneously shows the first two principal

component values yi = (v1,v2)
>xi ∈ Y ⊂ Rp=2, i = 1, . . . , n, and the two dimensional loading

plot illustrating the vectors

(v1,`, v2,`)
>, for ` = 1, . . . , q = 5.

The low dimensional representations yi of the cases i = 1, . . . , n are illustrated by black dots

in Figure 8 (rhs), and proximity between black dots means that the corresponding cases are

similar. The loading vectors (v1,`, v2,`)
>, ` = 1, . . . , q, are illustrated by red vectors in Figure 8

(rhs). Note that these are the components of the first two orthonormal weight vectors v1 and v2.

The lengths of these red vectors reflect standard deviations along the variables, and the cosines

of the angles between the red vectors give the corresponding correlations. The projections of

the cases yi on the axes of the loading vectors (v1,`, v2,`)
> approximate the original cases xi. In

fact, this is exact for q = 2 and an approximation for q > 2, for more interpretation we refer to

Section 7.2 of Stahel [29].

Remarks.

• PCA is sensitive to outliers, and there also exist robust PCA versions. For instance, Croux

et al. [3] give an algorithm that is based on median absolute deviations (MADs), we also

refer to the R package pcaPP. For general autoencoders we refer to the next section.

• Standardization considers translation and scaling of cases to the same origin and the same

units. SVD then tries to find an optimal rotation of the standardized data to a new

orthonormal basis.

3 Autoencoders

The PCA introduced above can be seen as an autoencoder. In this section we introduce autoen-

coders in more generality, and we provide a bottleneck neural network (BNN) which is a second

example of an autoencoder.

3.1 Introduction to autoencoders

3.1.1 Methodology

An autoencoder consist of two mappings

ϕ : Rq → Rp and ψ : Rp → Rq, (3.1)

with dimensions p ≤ q, therefore, an autoencoder typically leads to a loss of information.

Choose a dissimilarity function d(·, ·) : Rq×Rq → R+ being zero if and only if the two arguments

in d(·, ·) are identical, that is, d(x′,x) = 0 if and only if x′ = x. An autoencoder is a pair (ϕ,ψ)

of mappings (3.1) such that their composition π = ψ ◦ ϕ leads to a small reconstruction error

w.r.t. the dissimilarity function d(·, ·), that is,

x 7→ d(π(x),x) is small. (3.2)

14

 Electronic copy available at: https://ssrn.com/abstract=3439358

The mapping ϕ is then called encoder, the mapping ψ is called decoder, and y = ϕ(x) ∈ Rp

is a p dimensional representation of x ∈ Rq which contains all information of x up to some

reconstruction error that is small (3.2).

Remark. In (3.2) we try to find mappings such that we have a small reconstruction error be-

tween the data xi and its representation π(xi) for i = 1, . . . , n. We can think of (xi)1≤i≤n and

(π(xi))1≤i≤n describing two similar shapes. If we restrict ourselves to finding optimal transla-

tions, scalings and rotations such that the shapes of two objects can be superimposed, then we

are in the field of procrustes analysis (we will encounter this again later). This is implicitly done

by an autoencoder (possibly in a non-linear fashion) if we minimize the reconstruction error.

The PCA of the previous section provides a first example of an autoencoder. Assume we would

like to have a small reconstruction error for all covariates xi ∈ X . We choose as dissimilarity

function the squared Euclidean distance on Rq, i.e. d(x′,x) = ‖x′−x‖22 =
∑q

j=1(x
′
j−xj)2. This

results in the squared Frobenius norm for matrix differences if we consider all cases simultane-

ously, that is, ‖X′ −X‖2F =
∑n

i=1 ‖x′i − xi‖22.
The encoder ϕ is received from the orthonormal basis v1, . . . ,vq by setting, see (2.11),

ϕ : Rq → Rp, x 7→ y = ϕ(x) = (〈v1,x〉, . . . , 〈vp,x〉)> = (v1, . . . ,vp)
>x.

This corresponds to the first p columns in (2.8) if we insert X> ∈ Rq×n for x ∈ Rq. For p = 2

this exactly corresponds to the 2 dimensional representation of Figure 8 (lhs) in our example.

The decoder is given by

ψ : Rp → Rq, y 7→ ψ(y) = (v1, . . . ,vp)y.

This implies column-wise in X>

π(X>) = ψ ◦ ϕ(X>) = (v1, . . . ,vp)(v1, . . . ,vp)
>X> = X>p .

Thus, we have for the squared Euclidean distance on Rq a total reconstruction error of

n∑
i=1

d(π(xi),xi) =

n∑
i=1

‖π(xi)− xi‖22 = ‖Xp −X‖2F. (3.3)

3.1.2 Example, revisited: PCA as autoencoder

In Table 3 we provide the scaled reconstruction errors of the PCA for an increasing number p of

considered principal components. For p = 2 principal components we receive a reconstruction

error of 0.6124.

p 1 2 3 4 5

scaled reconstruction error ‖Xp −X‖F/
√
n 1.4263 0.6124 0.3128 0.0974 0.0000

Table 3: Scaled Frobenius norm reconstruction error of the PCA for 1 ≤ p ≤ 5.

In Figure 9 we illustrate all reconstructed values πj(xi) on the y-axis against the original values

xi,j on the x-axis (for components j = 1, . . . , 5 from left to right); these plots can also be obtained

15

 Electronic copy available at: https://ssrn.com/abstract=3439358

●

●
●

●

●

●

●●
●●

●

●

●
●

●

●

●

●

●

●
●

● ●● ● ● ●●
●●

● ●
●
●

●
●

●
●

●
●

●
●

●●
●●

●
●

●
●

●
●

● ●● ●● ● ●
●

●●●
● ●●●●

●
●

●
●

●
● ●●

●●
●

●

●
●
●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●●

●●

●●

●●

●

●

●

●

●

●
●

●●

●●

●●

●●

●

●
●

●●

●●

●● ●

●

●●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●●
●●

●

●

●

●

●●

●

●

●

● ●

●

●

● ●
● ●

●●
●

●●
●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●● ●

●

●

●●

●●
●

●

●

●

●
●

●

●

●
●

●
●

●●

●

●
●

●

●
●

●

●●

●●

●

●

●
●

●
●

●
●●●●

●

●
●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●●

●

●
●

●●●
●

●●

●

●

●

●
●

●

●

●
●

●
●

●
●

●
●

●●

●

●

●●

●

● ●
●

●

●

●

●

●●

●● ●●●●

●●

●

●
●●
●

●

●

●

●

●

●●

●

●●
●●

●

●

●

●●

●

●

●
●

●

●●
●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●●
●

●
●

●
●●

●

● ●●

●

●

−4 −2 0 2 4

−
4

−
2

0
2

4

PCA(p=2), component x_1

original value

re
co

ns
tr

uc
te

d
va

lu
e

●

●●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●●
●

●

●

●

●

●

●●

●
●

● ●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●
●●

●

●

●
●●

●●
●●

●●

●

●

●

●

●

●
●

●●

●●

●●

●●

●

●
●

●● ●●

●●
●

●

●●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●●

●

●

●

●

●●

●

●

●

● ●

●

●

●●
●●
●●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
●●●

●

●

●●

●
●

●

●

●

●

●●

●

●

● ●

●●

●●

●

●
●

●

●

●

●

●●

●●

●

●

●

●

●
●

●

●
●
●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●
●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●●●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●●
●

●

●●

●
●● ●

●

●

●

●
●●●●●

●●●
●●

● ●
●

●
●●

●

●

●

●

●●
●

●●

●●

●

●

●

●●

● ●

●

●

●

●
●

●
●

●●

●

●

●
●●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●
●

●
●

●
●

●

●

●

●

●

−4 −2 0 2 4

−
4

−
2

0
2

4

PCA(p=2), component x_2

original value

re
co

ns
tr

uc
te

d
va

lu
e

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●●

●

●

● ●

●

●

●
●
●

●●
●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●●

●●

●●

●●

●

●

●

●

●
●●

●●

●●

●●

●●

●
●

●

●●

●●

●●●

●

●●

●●

●

●●

●
●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●●
●●

●
●

●

●

●●

●

●●●●

●

●
●●

●●
●●

●

●●

●

●

●●
●

●

●●
●●

●
●

●
●

●

●

●●
●

●
●

●
●

●●
●

●

●
●

●

●
●

●

●

●

●
●

●●

●
●

●●

●
●

●

●

●

●
●

●

●

●
●

●

●
●
●

●

●●●

●

●

●●●
●

●●

●
●

●

●

●

●

●

●

●
●

● ●
●

●●
●

●
●

●

●●

●
●

●

●

●

●

●●

●

●●●●●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●●●

●●
●

●●

●

●

●

●

●
●●

●

●

●
●●●

●

●●

●

●

●

●

●
●

●
●

●
●
●

●●
●
●●●

●

●

●●

●

●
●
●

●
●

●
●

●●

●●●
●●●

●●

●

●●●●
●

●

●

●

●

●●

●●●
●●

●

●

●

●●

●

●●
●

●●

●
●

●
●

●
●

● ●●

●

●
●

●

●
●

●
●

●●
●

●

●●●

●

●

●

●

●

●

●

●

●●

● ●●
●●

●

●

●

●
● ●

●

●

●

●

−4 −2 0 2 4

−
4

−
2

0
2

4

PCA(p=2), component x_3

original value

re
co

ns
tr

uc
te

d
va

lu
e

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●● ●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●●
●●●●●

●
● ●●

●●●●
●●

●

●

●

●

●

●●

●●

●●
●●

●●

●

●●

●●

●●

●●
●

●

●●
●●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●●●●●●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

● ●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●●

●

●●
●

●

●

●

●●

●
●

●

●

●

●●
●

●

●
●

●

●

●

●
●

●

●

● ●

●

●

●

●●●●●

●

●

●

●

●

●

● ●

●

●

●

●●●

●

●

●●●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●
●●

●

●●

●

●

●

●

●

●●

●

●
●
●

●
●

●
●

●●

●

●

●●

●
●

●
●

●

●

●

● ●●
●●●

●●●

●●

●

●●●
●

●

●

●

●

●

●●
●

●●

●●

●

●

●

●●

●
●

●

●

●

●

●●●●

●

●

●

●
●

●

●

●●

●

●

●
●

●
●
●

● ●●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

−4 −2 0 2 4

−
4

−
2

0
2

4

PCA(p=2), component x_4

original value

re
co

ns
tr

uc
te

d
va

lu
e

●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●●

●

●

●

●

●

●●● ●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

●●

●
●
●

●●

●●

●●

●●

●
●
●
●

●
●●

●●
●●

●●

●●

●
●● ●●

●● ●●●

●

●●

●●

●

●●

●
●
●

●●

●

●
●

●

●

●●●●

●

●
●
●

●● ●●

●● ●●

●
●●●

●

● ●
●●

●
●●●

●●
●●

●

●●

●

●

●

●

●

●

●
●●●
●
●

●●

●

●

●

●●

●
●●
●

●
●
●●

●●
●

●

●

●●●●●

●

●

●
●

●●
●

●●●●

●
●

●

●

●

●

●

●

●
●

●

●●●

●
●

●●

●
●●
●

●

●
●

●
●●

●

●

●●

●●●●●●
●

●
●

●● ●
●

●

●

●

●

●● ●

●
●
●●
●●●
●

●
●

●
●

●●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●●●
●

●●

●●●
●
●

●

●●●● ●

●●●●

●

●●

●

●

●

●

●

●

● ●

●●
●
●●
●●

●●

●

●

●●

●

●
●
●●●●●

●●

●●●
●●●

●●

●

●●●●
●

●

●

●

●
●●

●
●●

●●

●●

●

●●
●

●
●

●

●

●

●
●
●
●

●
●
●
●●

●

● ●
●

●●

●●

●●●
●

●●●
●
●

●

●

●
●

●

●

●●

●
●●●

●

●

●

●

●●●

●

●

●

●

−4 −2 0 2 4

−
4

−
2

0
2

4

PCA(p=2), component x_5

original value

re
co

ns
tr

uc
te

d
va

lu
e

Figure 9: Reconstruction of original variables using a PCA with p = 2 principal components for

the variables x1, . . . , x5 (from left to right).

from the biplot on the right-hand side of Figure 8 by projecting yi ∈ R2 onto the corresponding

loading vectors (v1,`, v2,`)
>, 1 ≤ ` ≤ q = 5. If the reconstruction would be perfect, then all these

points would lie on the orange diagonal line. We observe that the reconstruction with PCA

p = 2 works rather well, the most difficult component seems x4 which is the most non-Gaussian

one, see Figure 5. This finishes this example.

The PCA is optimal if we consider linear approximations under the squared Euclidean distance

reconstruction error (3.3). Of course, this is not appropriate in any circumstances as seen above,

therefore we present other methods below.

3.2 Bottleneck neural network

3.2.1 Methodology

As an example of a non-linear autoencoder we consider a bottleneck neural network (BNN).

BNNs have been introduced and studied by Kramer [22], Hinton–Salakhutdinov [12], and other

researchers. BNNs are a special type of feed-forward neural networks. For a general discussion

of feed-forward neural networks we refer to our previous tutorials [7, 27], as well as to Chapter

5 in the lecture notes of Wüthrich–Buser [32].

In the following we use the notation of our previous tutorials. To successfully calibrate a BNN it

should have an odd number d of hidden layers (d is called the depth of the neural network). The

central hidden layer should be low dimensional, having q(d+1)/2 = p < q hidden neurons, and all

remaining hidden layers should be symmetric around this central hidden layer in the sense that

their numbers of hidden neurons satisfy q(d+1)/2−k = q(d+1)/2+k for all k = 1, . . . , (d+ 1)/2− 1.

The output dimension should be equal to the input dimension, i.e. qd+1 = q0 = q. Thus, for a

BNN of depth d = 3 we may choose the following numbers of neurons

(q0, q1, q2, q3, q4) = (5, 7, 2, 7, 5), (3.4)

such a BNN is illustrated in Figure 10. We describe below why we prefer a neural network

architecture that is symmetric around the central (bottleneck) layer which has q(d+1)/2 = p = 2

hidden neurons in example (3.4). Note that the input and output layers in (3.4) have dimension

q0 = q4 = q = 5 which is naturally given in our example of Section 2.2.2 because xi ∈ Rq=5. The

bottleneck has dimension q2 = p = 2, and the symmetric hidden layers around the bottleneck

have dimension q1 = q3 = 7, see Figure 10.

16

 Electronic copy available at: https://ssrn.com/abstract=3439358

x5

x4

x3

x2

x1

pi5

pi4

pi3

pi2

pi1

Figure 10: BNN with (q0, q1, q2, q3, q4) = (5, 7, 2, 7, 5), input x ∈ R5 and output π = π(x) ∈ R5

(both in blue color), and the black circles are the hidden neurons.

More formally, we choose a neural network architecture that has the following structure

π : Rq0 → Rqd+1=q0 , x 7→ π(x) =
(
z(d+1) ◦ z(d) ◦ · · · ◦ z(1)

)
(x),

with hidden neural network layers for 1 ≤ m ≤ d given by

z(m) : Rqm−1 → Rqm , z 7→ z(m)(z) =
(
φ(〈w(m)

1 , z〉), . . . , φ(〈w(m)
qm , z〉)

)>
,

with neural network weights w
(m)
l ∈ Rqm−1 , 1 ≤ l ≤ qm, and with activation function φ : R→ R.

Finally, the output layer is chosen as

z(d+1) : Rqd → Rqd+1 , z 7→ z(d+1)(z) =
(
〈w(d+1)

1 , z〉, . . . , 〈w(d+1)
qd+1

, z〉
)>

,

with neural network weights w
(d+1)
l ∈ Rqd , 1 ≤ l ≤ qd+1, and with linear output activation

function. This BNN has a network parameter θ = (w
(1)
1 , . . . , w

(d+1)
qd+1) ∈ Rr of dimension r =∑d+1

m=1 qmqm−1. The BNN in Figure 10 has a network parameter of dimension r = 98.

Remarks.

• In contrast to classical feed-forward neural networks we do not include an intercept here,

because the features xi ∈ X have been standardized. This slightly reduces the dimension

of the network parameter compared to classical feed-forward neural networks.

• The output activation has been chosen to be the linear one because all components of x

live in R. Below, we will also meet other output activation functions.

17

 Electronic copy available at: https://ssrn.com/abstract=3439358

• As activation function φ for the hidden layers we typically choose the hyperbolic tangent

function. If we would choose the linear activation function for φ, we would be back in the

PCA case, i.e., a BNN having only linear activation functions gives a PCA.

The BNN encoder is given by (neuron activation at the central hidden layer)

ϕ : Rq0=q → Rq(d+1)/2=p, x 7→ y = ϕ(x) =
(
z((d+1)/2) ◦ · · · ◦ z(1)

)
(x),

and the BNN decoder is given by

ψ : Rq(d+1)/2=p → Rqd+1=q, y 7→ ψ(y) =
(
z(d+1) ◦ · · · ◦ z((d+1)/2+1)

)
(y).

We implement this BNN using the keras library in R. In Listing 4 we illustrate the corresponding

Listing 4: BNN implementation using the keras library of R

1 library(keras)

2

3 Input <- layer_input(shape = c(5), dtype = ’float32 ’, name = ’Input ’)

4

5 Encoder = Input %>%

6 layer_dense(units=7, activation=’tanh ’, use_bias=FALSE , name=’Layer1 ’) %>%

7 layer_dense(units=2, activation=’tanh ’, use_bias=FALSE , name=’Bottleneck ’)

8

9 Decoder = Encoder %>%

10 layer_dense(units=7, activation=’tanh ’, use_bias=FALSE , name=’Layer3 ’) %>%

11 layer_dense(units=5, activation=’linear ’, use_bias=FALSE , name=’Output ’)

12

13 model <- keras_model(inputs = Input , outputs = Decoder)

14 model %>% compile(optimizer = optimizer_nadam (), loss = ’mean_squared_error ’)

R code using the architecture illustrated in Figure 10, see also (3.4), with hyperbolic tangent

activation function for φ. This results in a BNN having r = 98 parameters, see Listing 5.

Listing 5: BNN architecture of Figure 10

1 Layer (type) Output Shape Param #

2 ===

3 Input (InputLayer) (None , 5) 0

4 ___

5 Layer1 (Dense) (None , 7) 35

6 ___

7 Bottleneck (Dense) (None , 2) 14

8 ___

9 Layer3 (Dense) (None , 7) 14

10 ___

11 Output (Dense) (None , 5) 35

12 ===

13 Total params: 98

14 Trainable params: 98

15 Non -trainable params: 0

This BNN could now be trained brute force by applying the gradient descent algorithm. In

our problem this would work well because it is a low dimensional problem, however, in high

dimensional situations it often does not work properly. Therefore, we follow the proposal of

Hinton–Salakhutdinov [12] for model training.

18

 Electronic copy available at: https://ssrn.com/abstract=3439358

3.2.2 Bottleneck neural network calibration

Hinton–Salakhutdinov [12] have suggested to use symmetric feed-forward neural network ar-

chitectures around the bottleneck layer because these architectures can nicely be pre-trained.

Since q(d+1)/2−k = q(d+1)/2+k for all k = 1, . . . , (d + 1)/2 − 1, we can collapse all hidden layers

in between the two layers (d+ 1)/2− k and (d+ 1)/2 + k by merging these two layers to a new

central layer. This is illustrated in Figure 11. The graph on the left-hand side shows the full

x5

x4

x3

x2

x1

pi5

pi4

pi3

pi2

pi1

x5

x4

x3

x2

x1

pi5

pi4

pi3

pi2

pi1

z7

z6

z5

z4

z3

z2

z1

Z7

Z6

Z5

Z4

Z3

Z2

Z1

Figure 11: (lhs) full BNN, (middle) hidden layers 1 and 3 merged to the new central layer, (rhs)

remaining inner BNN.

BNN architecture of depth d = 3 with (q0, q1, q2, q3, q4) = (5, 7, 2, 7, 5). The middle graph shows

this BNN where we have merged layers 1 and 3 with q1 = q3 = 7 to the new central layer, i.e. we

have a network of depth 1 with (q0, q1, q4) = (5, 7, 5). The graph on the right-hand side shows

the collapsed part of the BNN. Training then includes the following steps:

• In a first step we train the new neural network (middle graph of Figure 11). This provides

pre-trained weights w
(1)
1 , . . . ,w

(1)
q1=7 ∈ Rq0=5 and w

(d+1)
1 , . . . ,w

(d+1)
qd+1=5 ∈ Rqd=7 for the full

BNN. This corresponds to “pre-training 1: outer part” on lines 13-14 of Listing 6.

• From this merged and trained neural network (middle graph of Figure 11) we read off the

neuron activations zi = z(1)(xi) = (z
(1)
1 (xi), . . . , z

(1)
q1 (xi))

> ∈ Rq1=qd in the central layer

for all cases i = 1, . . . , n. This corresponds to lines 17-18 of Listing 6.

• These neuron activations z1, . . . ,zn ∈ Rq1=qd are used to pre-train the inner part of the

BNN which is illustrated on the right-hand side of Figure 11. Therefore, we again try to

minimize the reconstruction error between the inputs zi and the resulting outputs. This

provides pre-trained weights w
(2)
1 , . . . ,w

(2)
q2=2 ∈ Rq1=7 and w

(3)
1 , . . . ,w

(3)
q3=7 ∈ Rq2=2 for the

full BNN. This corresponds to “pre-training 2: inner part” on lines 21-22 of Listing 6.

• All these pre-trained weights are then used as starting weights for the calibration of the

full BNN using the gradient descent algorithm given in Listing 4.

3.2.3 Example, revisited

We come back to the data presented in Listing 1. We train the BNN illustrated in Listings 4 and

5. The neuron activations at the bottleneck (using the encoder) yi = ϕ(xi) =
(
z(2) ◦ z(1)

)
(xi)

then provide the q2 = p = 2 dimensional representation of xi ∈ Rq=5.

19

 Electronic copy available at: https://ssrn.com/abstract=3439358

Listing 6: pre-training of weights in BNNs

1 # definition of a 1 hidden layer BNN

2 bottleneck .1 <- function(q0, q1){

3 Input <- layer_input(shape = c(q0), dtype = ’float32 ’, name = ’Input ’)

4 Output = Input %>%

5 layer_dense(units=q1, activation=’tanh ’, use_bias=FALSE , name=’Bottleneck ’) %>%

6 layer_dense(units=q0, activation=’linear ’, use_bias=FALSE , name=’Output ’)

7 model <- keras_model(inputs = Input , outputs = Output)

8 model %>% compile(optimizer = optimizer_nadam (), loss = ’mean_squared_error ’)

9 model

10 }

11

12 # pre -training 1: outer part

13 model.1 <- bottleneck .1(5 ,7)

14 fit <- model.1 %>% fit(as.matrix(X), as.matrix(X), epochs =2000, batch_size=nrow(X))

15

16 # neuron activations in the central layer

17 zz <- keras_model(inputs=model.1$input , outputs=get_layer(model.1,’Bottleneck ’) $output)

18 yy <- zz %>% predict(as.matrix(X))

19

20 # pre -training 2: inner part

21 model.2 <- bottleneck .1(7 ,2)

22 fit <- model.2 %>% fit(as.matrix(yy), as.matrix(yy), epochs =2000, batch_size=nrow(yy))

23

24 # get pre -trained weights

25 get_weights(model .1)

26 get_weights(model .2)

For training the BNN of Listing 4 we pre-train the weights using the methodology described

above by collapsing some of the hidden layers. The R code used for this pre-training is provided

in Listing 6. On lines 12-14 the outer part is pre-trained, and on lines 20-22 the inner part is

pre-trained. On lines 24-26 we extract the pre-trained weights. Using these pre-trained weights

for the full BNN we receive a reconstruction error ‖(ψ ◦ ϕ)(X) −X‖F/
√
n of 0.7968, which is

worse than the one of the PCA with p = 2 principal components, see Table 3.

Using these pre-trained weights as initialization, the gradient descent algorithm is applied to

the full BNN of Listing 4 to obtain a BNN dimension reduction. In Figure 12 we illustrate

the decrease of the Frobenius loss function over 10’000 training epochs.9 We observe that after

roughly 2’000 epochs the loss falls below the one of the PCA with p = 2 principal components

(orange line in Figure 12 at level 0.6124), thus, we receive a smaller reconstruction error in this

BNN with q2 = p = 2 bottleneck neurons. The final reconstruction error after 10’000 epochs is

0.5611.10

In Figure 13 we illustrate the PCA and the BNN dimension reductions to p = q2 = 2 dimensions.

We see very similar results, the BNN dimension reduction seems to be a slightly rotated and

scaled version of the PCA solution. We could compare the two shapes of the low dimensional

representations in more depth, as mentioned this may include a translation, a scaling and a

rotation of, say, the bottleneck representation such that the two shapes can be superimposed.

Again, procrustes analysis maybe useful for this task, but we refrain here from going into more

detail.11

9The total run-time of 10’000 training epochs is 25 seconds.
10Note that we do not track over-fitting here.
11The R package MCMCpack has a procrustes function.

20

 Electronic copy available at: https://ssrn.com/abstract=3439358

●
●●●

●●
●●
●●●
●●
●●●
●●
●●●

●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●

●●●●
●●●

●●●●●
●●

●●●
●●●●●●●
●●

●●●●●
●●●

●●●
●●

●●
●●●●●●
●●●

●●●
●●●●●
●●●

●●●
●●●●●●●●●
●●

●●
●●●●●
●●

●●●●
●●●
●●●

●●
●●

●●●
●●

●●●●
●●●
●●

●●
●●

●●
●●●

●●●
●●

●●
●●●

●●
●●●

0 2000 4000 6000 8000 10000

0.
0

0.
2

0.
4

0.
6

0.
8

gradient descent algorithm

epochs

F
ro

be
ni

us
 n

or
m

 lo
ss

● decrease GDM
PCA(p=2)

Figure 12: Decrease of Frobenius loss function in the gradient descent algorithm over 10’000

epochs, and pre-trained weights as starting value.

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●● ●●

●●

●
●

●
●● ●●

●●

●●

●

●

●

●

●

●●
●●

●● ●●

●●

●

●●

●●

●●

●●
● ●

●●
●●

●

●●

●
●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●● ●●●●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

● ● ●

●

●

●

●

●

●

●
●

●

●
●

●

●● ●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●
●

●
●

●
●

●

●

●

●

●

●●
●●

●

●●
●

●

●

●

●●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●
●

●
●

●

●

●

●●

●
●

●

●

●

●●

●

●

● ●
●●

●

●●

●

●

●

●

●

●
●

●

●
●

●

● ●
●

●

●●

●

●

●●

●

●
●

●
●

●

●

● ●●

●●●

●●●

●●

●

●●●●
●

●

●

●
●

●●

●

●●

●●

●

●

●

●●

●

●

●

●
●

●

● ●● ●

●

●

●

●
●

●●

● ●
●

●

●
●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

principal components analysis

1st principal component

2n
d

pr
in

ci
pa

l c
om

po
ne

nt

●

●●
●

●

●

●

●

●●●
●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●
●●

●●
●

●

●

●
●● ●●

●●

●●
● ●

●●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●●●

●●

●

●

●

●

●●●

●

●●

●

●

●● ●●●●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

● ●

●

●

●

●

●●

●●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
●●

●

●●

●

●

●

●

●●
●

●

●●

●●●

●●●

●
●●

●

●

●
●

●

●

●

●

●
●

●
●

●

●
●●

●

●●

●

●●
●

●

●

● ●

●

●

●
●

●●

●

● ●

●
●

●

●

●

●

●

●
●

●

●

●

●●●●

●
●

●

●
●

●

●

●
●

●

●

●

●

●● ●●●●

●

●●

●

●

●
●

●

●

●
●

●

●

●
●●●

●

●

●

●●
●

●●

●

●

●

●

tau>=21
17<=tau<21
tau<17 (sports car)

●

● ●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

● ●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●●

●●

●●

●●

●

●

●

●

● ●●

●●
●●

●●

●●

●
●● ●●

●● ●●●

●

●●

●●

●

●●

●
●

●

●
●

●

●
●

●

●

● ●●●

●

●

●
●

●
●●●

●● ●●

●

●
●●

●

● ●
●●

●

● ●●
●●●●

●

●●

●

●

●
●

●

●

●
●

●
●●

●

●
●

●

●

●
●

●

● ●● ●

●
●

●
●

●
●

●

●

●

● ●● ●●

●
●

●
●

●●
●

●
●●
●

●
●

●

●

●

●

●

●

●
●

●

●●●

●

●

●●

●
●

●●

●

●
●

● ●
●●

●

●
●

●
●●

●● ●

●

●
●

●●
●

●

●

●

●

●

● ● ●

●
●

● ●
● ● ●

●

●
●

●
●

●●

● ●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●●

●

● ●

●● ●

●

● ●

●● ●

●

●

●

● ●●●

●

●
● ●●

●

●●

●

●

●

●

●

●

●●

●
● ●

● ●
● ●●●

●

●

●●

●

●
●

●
● ●● ●

●●

●●●

●●●

●●

●

● ●● ●●

●

●

●

●
●●

● ●●

●●

●
●

●

●●
●

● ●

●

●

●

●

●

●

●

● ●● ● ●

●

● ●

●

● ●

● ●

● ●
●●

●● ●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●● ●

●

●

●

●

−0.4 −0.2 0.0 0.2 0.4

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

bottleneck neural network autoencoder

1st bottleneck neuron

2n
d

bo
ttl

en
ec

k
ne

ur
on

●

●
●
●

●

●

●
●

● ●
●

●

●

●

● ●

●

●

●●

●

●

● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●●●

●●

●●
●●●

●

●●

● ●
●

●

●
●

●

●
●

● ●●●

●

●●●

●● ●●

●

●
●●

● ●
●●

●

● ●●
●●●●

●

●●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●
●

●
● ●● ●

●

●

● ● ●

●

●
●

●

●

● ●

●

● ●

●

●

●●

● ●

●

●

●

●

●
● ●●

●

●●

●

●

●●

●●

●

●

●●

●●●

●●●

●

●●

●
●

● ●
●

●

● ●

● ●

● ●
●●

●● ●
●●

●

●●
●●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●● ●
●

●

●
●

●

●
●

●

●

●

●

● ●●
●●●●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●● ●

●●

●

●

●

●

tau>=21
17<=tau<21
tau<17 (sports car)

Figure 13: PCA dimension reduction, see Figure 8, and BNN autoencoder dimension reduction

for p = 2 illustrating the resulting yi ∈ Y.

●

●●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

● ●

●
●●

● ●

●

●
●

●
●

●●
●

●
● ●●

●
●

●
●

●●

●
●●

●
●

●
●

●

●

●
●
●

●
● ●●●

● ●●
●

●
●● ●●

●●

●
●

●
●

●●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●●

●●

●●

●●

●

●

●

●

●

●
●

●●

●●

●●

●●

●

●
●

●●
●●

●● ●

●

●●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●●

●●

●

●

●

●

●●

●

●

●

● ●

●

●

● ●
● ●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●● ●

●

●

●●

●●
●

●

●

●

●
●

●

●

●
● ●

●

●●

●

●
●

●

●

●

●

●●

●●

●

●

●
●

●
●

●

●
●●●

●

●
●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●●

●

●
●

●●●
●

●●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●●

●

●

●●

●

● ●●

●

●

●

●

●●

●● ●●●●

●●

●

●
●●
●●

●

●

●

●

●●

●

●●
●●

●

●

●

●●

●

●

●

●

●

●●
●
●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

● ●●
●

●

●

●

●

●
●

●

●

● ●

●

−4 −2 0 2 4

−
4

−
2

0
2

4

BNN(q2=2), component x_1

original value

re
co

ns
tr

uc
te

d
va

lu
e

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●
●

●
●

● ●●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

● ●●
●●

●

●

●
●

● ● ●
●
●

●
●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●●
●●

●

●

●
●●

●●
●●

●●

●

●

●

●

●

●
●

●●

●●

●●

●●

●

●
●

●● ●●

●●
●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●●

●●

●

●

●

●

●●

●

●

●

● ●

●

●

●●

●●
●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●●●●

●

●

●●

●
●

●
●

●

●

●
●

●

●

● ●

●●

●●

●

●
●

●

●

●

●

●●

●●

●

●

●

●

●
●

●

●
●
●

●

●

●
●

●

●

●
●

●●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●
●●

●

●

●
●● ●

●

●

●

●●

●

●

●

●

●

●●

●

●

● ●●●●

●●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●●●

●

●●

●
●● ●

●

●

●

●
●●

●●●●●●

●●●
● ●● ●●●

●

●

●

●●
●

●●

●●

●

●

●

●●

●
●

●

●

●

●
●

●
●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●●
●

● ●● ●

●
●

●

●

●

●

●

−4 −2 0 2 4

−
4

−
2

0
2

4

BNN(q2=2), component x_2

original value

re
co

ns
tr

uc
te

d
va

lu
e

●

●●

●

●

●

●

●
●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

● ●

●

●

●

●
●

●●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●●

●

●

●

●●

●●

●●

●●

●

●

●

●

●
●●

●●

●●

●●

●●

●
●●

●●

●●
●●●

●

●●

●●

●

●●

●
●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●●

●●
●

●

●

●

●●

●

●●●●

●

●
●●

●●●●

●

●●

●

●

●
● ●●

●●
●●

●
●●
●

●

●

●
●

●

●
●

●
●

●●
●

●

●
●

●

●

●

●
●

●

●
●

●●

●
●

●●

●
●

●

●

●

●

●

●

●

●

● ●

●
●●

●

●●●

●

●

●●●●●●

●
●

●

●
●

●

●

●

●
●

●
●

●

●●
●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●●
●●●

●●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●●●

●
●

●

●●

●

●

●

●

●
●●

●

●

●
●●●

●

●●

●

●

●

●

●●

●●

●
●
●

●●
●
●●●

●

●

●●

●

●
●
●

●
●

●
●

●●

●●●
●●●

●●

●

●●●●
●

●

●

●

●

●●

●●●

●●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●
●

● ●●

●

●●

●

●
●

●
●

●●
●

●

●●●

●

●

●

●

●

●
●
●

●●

●
●●●●

●

●

●

●● ●

●

●

●

●

−4 −2 0 2 4

−
4

−
2

0
2

4

BNN(q2=2), component x_3

original value

re
co

ns
tr

uc
te

d
va

lu
e

●

●
●

●

●●

●

●
●

●

●
●

●

●

●

●● ●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●●
●●●●

●

●

● ●●
●●●●

●●

●

●

●

●

●

●
●

●●

●●
●●

●●

●

●
●

●●

●●

●●
●

●

●●

●●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●●●●●●

●

●●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●
●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●●

●

●●
●

●

●

●

●●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●
●●●●

●

●

●

●

●

●

● ●

●
●

●

●●●

●

●

●

●
●
●

●

●

●

●●

●
●

● ●

●

●●

●

●

●●
●● ●

●●

●

●

●

●

●

●●

●

●
●
●

●
●

●
●

●●

●

●

●●
●

●
●

●

●

●

●

● ●●
●●●

●●●

●●

●

●
●
●
● ●

●

●

●

●

●●
●

●●

●●

●

●

●

●●

●
●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●●

●

●

●●

●
●
●

●
●●

●

●●

●

●

●

●

●

●

●●
●

●●
●

●

●

●

●

●●
●

●

●

●

●

−4 −2 0 2 4

−
4

−
2

0
2

4

BNN(q2=2), component x_4

original value

re
co

ns
tr

uc
te

d
va

lu
e

●

●●

●

●

● ●

●

●

●●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●●

●

●

●

●
●

●●
●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●●

●●

●●

●●

●

●

●

●

●

●●

●●
●●

●●

●●

●

●● ●●

●●
●●●

●

●●

●●

●

●●

●●●●●●

●
●

●

●

●●●●

●

●

●

●

●
● ●●

●● ●●

●●●●

●

● ●
●●●

●

●●●●●●

●

●●

●

●

●

●

●

●

●

●
●●●
●

●
●

●

●

●

●
●

●
●
●●

●
●●
●

●●
●

●

●

●●●●●

●

●

●
●

●●

●

●●●●

●
●

●

●

●

●
●

●

●●

●

●●●

●●

●●
●●
●●

●

●
●

●●
●

●

●

●
●

●
●

●
●●●
●

●

●

●●
●
●

●

●

●

●

●●
●

●●
●●●●●
●

●
●

●

●

●
●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●●●

●
●
●

●●
●

●

●

●

●●●●

●

●
●●●

●

●●

●

●

●

●

●

●

● ●

●
●●

●●
●● ●●

●

●

●●

●

●
●
●
●
●
●
●

●●

●●●

●●●

●●

●

●●●●
●

●

●

●

●
●●

●●●

●●

●

●

●

●●
●

●●
●

●

●

●

●

●

●

●
●
●●●

●

● ●

●

●
●
●●
●●
●
●

●●●
●●

●

●

●
●

●

●

●●

●
●●
●

●

●

●

●

●●●

●

●

●

●

−4 −2 0 2 4

−
4

−
2

0
2

4

BNN(q2=2), component x_5

original value

re
co

ns
tr

uc
te

d
va

lu
e

Figure 14: Reconstruction of original variables using a BNN with q2 = 2 bottleneck neurons for

the variables x1, . . . , x5 (from left to right).

21

 Electronic copy available at: https://ssrn.com/abstract=3439358

In Figure 14 we illustrate the BNN reconstructions over all components 1 ≤ j ≤ q. This should

be compared to the PCA reconstructions given in Figure 9. The BNN results are slightly better,

though only hardly visible.

●●
●●
●●●●

●●●●
●●●●●●●●●●

●●●●●
●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●
●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●
●●●●●●●●●●

●●●●●●●●●
●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●
●●●●●●●

●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●

●●●●●●●●
●●●●●

●●●●●●●
●●●●●

●●●●●●●●●●●
●●●●●●●

●●●●
●●●

●●●
●

●●●●●
●●●

●●●●●●●●
●●●●

●●●●●●
●●●●●

●●●
●●
●●●●●

●●●●●●
●●●●●

●●
●●
●●●

●
●●●

●●●
●●●●

●●●●
●●●●

●●

●

●
●●
●
●●
●
●●
●●●

●
●
●●

●
●

●
●

●

●

●
●

●

●

●

●

0 100 200 300 400

0.
0

0.
5

1.
0

1.
5

2.
0

reconstruction errors: PCA vs. BNN

individual cases (ordered)

re
co

ns
tr

uc
tio

n
er

ro
rs

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●●

●●

●●

●

●●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●●●

●

●
●
●

●

●

●

●

●

●●
●●●

●

●

●

●

●●

●

●

●

●

●

●●●

●●

●●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●●●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●●

●

●

●
●

●

●

●

●●

●●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

PCA(p=2)
BNN

Figure 15: Reconstruction errors on individual cases: PCA(p = 2) in blue color vs. BNN

reduction in orange color, individual cases are ordered w.r.t. PCA reconstruction errors.

In Figure 15 we compare the reconstruction errors on individual cases for the PCA dimension

reduction technique and the BNN dimension reduction technique to two dimensional represen-

tations yi ∈ Y ⊂ R2. From this graph we conclude that both methods come to similar results,

also on individual cases, but in general, the reconstruction error is smaller for the BNN. On few

cases the BNN technique leads to clearly better reconstruction results (orange dots in the lower

right corner). The main conclusion of this example is that for low dimensional problems the

PCA is (not surprisingly) often sufficient because non-linearities do not play a crucial role.

3.3 Loss functions

For the PCA the natural loss function to calculate the reconstruction error is the Frobenius

norm

‖Xp −X‖F =

√√√√ n∑
i=1

‖π(xi)− xi‖22.

For comparability reasons we choose the mean squared error loss function for the BNN calibra-

tion, see line 14 in Listing 4. This loss function scales the Frobenius norm with (nq)−1 which is

a constant for a given number n of cases, i.e. the same objective function is minimized in the

PCA and in the BNN of Listing 4.

However, the BNN technique allows for much more flexibility in the choice of the loss function.

We may, for instance, replace the Euclidean dissimilarity function by any other norm, that is,

22

 Electronic copy available at: https://ssrn.com/abstract=3439358

we may choose, say, the L1-norm (Manhattan distance)

x 7→ d(π(x),x) = ‖π(x)− x‖1.

In the implementation, this only requires that the mean squared error on line 14 of Listing 4

is replaced by the corresponding dissimilarity measure.12

Another point that is worth mentioning is that we perform unsupervised learning here, and

implicitly we give the same importance to all components of x. However, if dimension reduction

is done as data pre-processing for a subsequent regression analysis for insurance pricing, it might

be that more attention should be given to specific components of x. In this case we may consider

a dissimilarity function

x 7→ d(π(x),x) =

q∑
j=1

ωj |πj(x)− xj |2 ,

for non-negative weights ωj > 0.

A different important example is obtained if x is a discrete probability measure belonging the

(q − 1)-unit simplex

Sq =

x ∈ Rq; xj ≥ 0 and

q∑
j=1

xj = 1

 ⊂ Rq. (3.5)

In this case we would design a BNN autoencoder

ϕ : Sq → Rp and ψ : Rp → Sq.

The dissimilarity function at hand for this kind of problem is the Kullback–Leibler (KL) diver-

gence given by

x 7→ d(π(x),x) = DKL(π(x)||x) =

q∑
j=1

πj(x) log

(
πj(x)

xj

)
. (3.6)

Note that the KL divergence is not a metric because it is neither symmetric nor does it satisfy

the triangle inequality. In the probability measure case one should also replace the linear output

function, see line 11 of Listing 4, by the softmax output function (generalized logistic function)

to guarantee that the output π(x) lies in the unit simplex Sq. We will come back to this example

in the subsequent chapters.

4 Clustering

The previous methods have aimed at reducing the dimension of the data by projecting the feature

space to a lower dimensional space such that the original data can be reconstructed sufficiently

well. These projections have led to continuous low dimensional representations Y ⊂ Rp of the

12We refer to the Keras documentation for further available dissimilarity measures such as the

mean absolute error (Manhattan distance).

23

 Electronic copy available at: https://ssrn.com/abstract=3439358

data X ⊂ Rq. In the present section we do not focus on having good reconstruction properties,

but we rather aim at partitioning the data X into K clusters such that the resulting clusters

are homogeneous. The latter is measured using again a dissimilarity measure which we try to

minimize simultaneously on all clusters.

4.1 Types of clusterings

There are different types of clustering methods. One distinguishes between (i) hierarchical clus-

tering, (ii) centroid-based clustering and (iii) distribution-based clustering. There are two types

of hierarchical clusterings. The bottom-up clustering13 algorithm merges recursively similar

clusters to bigger clusters until, eventually, the algorithm is stopped. That is, this algorithm

groups clusters tree-like into a next higher level. A top-down clustering algorithm acts differently

in that it splits recursively (and tree-like) the entire portfolio into smaller (more homogeneous)

sub-groups. We will not study hierarchical clustering methods in this tutorial, but we refer to

Section 14.3.12 in Hastie et al. [11], and we mention that an advantage of hierarchical clustering

is that it does not require pre-specification of the numbers of clusters wanted.

Centroid-based and distribution-based clustering methods need to pre-specify the number of

clusters wanted. We describe these two types of clustering methods in the following sections.

4.2 K-means clustering

4.2.1 Methodology and algorithm

K-means clustering is a centroid-based clustering that partitions the n cases xi ∈ X ⊂ Rq into

K disjoint clusters based on a hyperparameter K. This clustering is described by a classifier

CK : Rq → K = {1, . . . ,K}, x 7→ CK(x),

that gives us a partition (C1, . . . , CK) of Rq by defining for all k ∈ K the clusters

Ck = {x ∈ Rq; CK(x) = k} .

For an illustration see Figure 16. Note that a partition (C1, . . . , CK) of Rq satisfies

K⋃
k=1

Ck = Rq and Ck ∩ Cl = ∅ for all k 6= l.

The classifier CK is chosen such that we have minimal dissimilarity within all clusters Ck. As

dissimilarity function we choose the squared Euclidean distance in Rq, that is, for x′,x ∈ Rq we

set

d(x′,x) = ‖x′ − x‖22.

The reason for this choice will become clear later. The K-means clustering is then obtained by

minimizing the following objective function

arg min
(C1,...,CK)

K∑
k=1

∑
xi∈Ck∩X

d(µk,xi) = arg min
(C1,...,CK)

K∑
k=1

∑
xi∈Ck∩X

‖µk − xi‖22, (4.1)

13Bottom-up clustering is also known as agglomerative clustering and single-linkage clustering.

24

 Electronic copy available at: https://ssrn.com/abstract=3439358

where C = (C1, . . . , CK) is a partition of Rq, where xi ∈ Ck ∩ X runs over all data X =

{x1, . . . ,xn} that lie in Ck, and where µk is the sample mean over all xi ∈ Ck ∩ X , i.e.

µk =
1

|{xi ∈ Ck ∩ X}|
∑

xi∈Ck∩X
xi ∈ Rq. (4.2)

We give some interpretations. The last term in (4.1), given by

D(Ck,µk) =
∑

xi∈Ck∩X
‖µk − xi‖22,

is the within-cluster dissimilarity on cluster Ck. Thereby, we consider all cases xi ∈ Ck ∩X , and

µk ∈ Rq is the sample mean on Ck. This sample mean minimizes the within-cluster dissimilarity

on Ck relative to that cluster center (centroid), that is,

µk = arg min
µ∈Rq

∑
xi∈Ck∩X

‖µ− xi‖22 = arg min
µ∈Rq

D(Ck,µ). (4.3)

This is the reason for choosing the squared Euclidean distance as dissimilarity measure, and it

gives the name K-means to this method. Optimization (4.1) then aims at minimizing the total

within-cluster dissimilarity, after already having performed (4.3), thus, we determine

arg min
(C1,...,CK)

K∑
k=1

D(Ck,µk).

The resulting optimal partition (C1, . . . , CK) of Rq decomposes the total space Rq into so-called

Voronoi cells. This is illustrated in Figure 16 (lhs) for a synthetic data set for q = 2 dimensional

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

● ●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

Step (1a) of K−means for K=4

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

● ●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●
●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

● ●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

● ●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●
●

●

●

●
●

●

●

● ●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●
●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

● initial centers

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

● ●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

Step (1b) of K−means for K=4

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

● ●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●
●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

● ●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

● ●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●
●

●

●

●
●

●

●

● ●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●
●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

initial centers
updated centers

Figure 16: Illustration of K-means clustering for CK : R2 → K = {1, . . . ,K = 4}: black dots

illustrate the cluster centers of step (1a) of the K-means clustering algorithm, and orange dots

step (1b).

features xi ∈ R2 and K = 4 clusters C1, . . . , C4 (gray, blue, green and red). The cluster centers

25

 Electronic copy available at: https://ssrn.com/abstract=3439358

µk ∈ R2 are illustrated by the black dots. The clusters then provides us with the classifier

x 7→ CK(x) =
K∑
k=1

k1{x∈Ck} ∈ K.

The remaining difficulty is to find the optimal partition (C1, . . . , CK) of Rq.

In general, the global minimum of (4.1) cannot easily be determined. However, using additional

step (4.3) we can provide an algorithm that converges to a local minimum. Consider the set of

available features by X = {x1, . . . ,xn} ⊂ Rq.

K-Means Clustering Algorithm.

(0) Choose an initial classifier C(0)K : X → K with corresponding sample means (µ
(0)
k)k∈K on

this initial partition, see (4.2).

(1) Repeat for t ≥ 1 until no changes are observed:

(a) given the present sample means (µ
(t−1)
k)k∈K choose the updated classifier C(t)K : X → K

such that for each xi ∈ X we have

C(t)K (xi) = argmin
k∈K

‖µ(t−1)
k − xi‖22 ∈ K;

(b) calculate the sample means (µ
(t)
k)k∈K on the new partition induced by classifier C(t)K :

X → K.

• The K-means clustering algorithm converges: Note that due to the minimization in step

(1a) and due to (4.3) for step (1b) each iteration in (1) reduces the total within-cluster

dissimilarity. These two steps are illustrated in Figure 16: the left-hand side illustrates

step (1a) of the algorithm, which aims at finding the best matching cluster center µ
(t−1)
k ;

the right-hand side illustrates step (1b) which updates the cluster centers (from black to

orange dots). Thus, we receive a sequence with decreasing value for the objective function

that is bounded from below by zero, and, henceforth, we have convergence. However,

we may end up in a local minimum of the objective function. Therefore, one may use

different (random) initial classifiers (seeds) C(0)K in step (0) of the algorithm to back-test

the solution.

• Another issue is the choice of the hyperparameter K for the number of clusters considered.

We may start with running the algorithm for K = 2 which leads to a binary partition

(Ck)k=1,2 with sample means (µk)k=1,2. For K = 3, we may then use these sample

means (µk)k=1,2 together with an arbitrary value µ ∈ Rq as initial values for the K-means

clustering algorithm with K = 3. This choice ensures that the resulting total within-cluster

dissimilarity is decreasing in K.

26

 Electronic copy available at: https://ssrn.com/abstract=3439358

• For an arbitrary feature x ∈ Rq we extend classifier C(t)K of the above algorithm by finding

the best matching cluster center to

x 7→ C(t)K (x) = argmin
k∈K

‖µ(t−1)
k − x‖22.

• For further information: The Voronoi partition (tessellation) is dual to the Delaunay tri-

angulation, see Fisher [8]. Consider the dual graph to the Voronoi partition by connecting

the cluster centers. The Voronoi partition is then obtained such that the Voronoi segments

split the cluster connections orthogonally at half distance between the cluster centers.

4.2.2 Example, revisited

We revisit the car models example of Listing 1. The goal is to cluster these car models using the

standardized features xi of each car i = 1, . . . , n, pre-processed according to Conventions 2.1. In

Listing 7: K-means clustering in R using kmeans

1 Kaverage <- colMeans(X) # should be zero because X is normalized

2

3 K0 <- 10 # maximal number of K-means clusters

4 TWCD <- array(NA, c(K0)) # total within -cluster dissimilarity (TWCD)

5 Classifier <- array(1, c(K0, nrow(X))) # classification

6

7

8 TWCD [1] <- sum(colSums(as.matrix(X^2))) # total dissimilarity for X normalized

9

10 set.seed (100) # set seed

11 for (K in 2:K0){ # determine K-means for K=2,...,K0

12 if (K==2){ K_res <- kmeans(X,K)}

13 if (K>2) {K_res <- kmeans(X,K_centers)}

14 TWCD[K] <- sum(K_res$withins)

15 Classifier[K,] <- K_res$cluster

16 K_centers <- array(NA , c(K+1, ncol(X)))

17 K_centers[K+1,] <- Kaverage

18 K_centers [1:K,] <- K_res$centers

19 }

Listing 7 we provide the R code to perform the K-means clustering. The first line of this listing

should provide zero, because the design matrix X has been standardized under Convention 2.1.

We perform K-means clustering for K = 2, . . . , 10, and we always use the previous cluster

centers (µk)k∈K as initial clusters for the K-means clustering with K + 1 clusters in step (0) of

the K-means clustering algorithm above. This way we receive a decreasing total within-cluster

dissimilarity for increasing hyperparameter K. This is illustrated in Figure 17 (lhs).

For further analysis of our results we choose hyperparameter K = 4,14 i.e. we consider parti-

tioning into four clusters. In Figure 17 (middle, rhs) we illustrate the resulting clustering of the

K-means algorithm outlined in Listing 7. The graph in the middle illustrates the four clusters

(in red, orange, magenta and blue colors) on the first two principal component axes obtained

from the PCA of Listing 2. The locations of the dots are identical to Figure 8, but the coloring

is different. In Figure 8 (lhs) the dots are colored according to the Belgium expert criterion for

14The hyperparameter choice K = 4 corresponds to the elbow method in Figure 17 (lhs), which tries to find

the kink in the decreasing dissimilarities (as a function of K).

27

 Electronic copy available at: https://ssrn.com/abstract=3439358

●

●

●

●

●

●

●
●

●
●

2 4 6 8 10

0
50

0
10

00
15

00
20

00

decrease in total within−cluster dissimilarity

hyperparameter K

to
ta

l w
ith

in
−

cl
us

te
r

di
ss

im
ila

rit
y

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●● ●●

●●

●
●

●
●● ●●

●●

●●

●

●

●

●

●

●●
●●

●● ●●

●●

●

●●

●●

●●

●●
● ●

●●
●●

●

●●

●
●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●● ●●●●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

● ● ●

●

●

●

●

●

●

●
●

●

●
●

●

●● ●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●
●

●
●

●
●

●

●

●

●

●

●●
●●

●

●●
●

●

●

●

●●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●
●

●
●

●

●

●

●●

●
●

●

●

●

●●

●

●

● ●
●●

●

●●

●

●

●

●

●

●
●

●

●
●

●

● ●
●

●

●●

●

●

●●

●

●
●

●
●

●

●

● ●●

●●●

●●●

●●

●

●●●●
●

●

●

●
●

●●

●

●●

●●

●

●

●

●●

●

●

●

●
●

●

● ●● ●

●

●

●

●
●

●●

● ●
●

●

●
●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

K−means vs. PCA

principal component 1

pr
in

ci
pa

l c
om

po
ne

nt
 2

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●
●● ●●●

●
●

●● ●●

●●

●

●

●

●

●●
●●

●●

●●

●●

●●

●●

●●
●

●●
●●●●

●

●

●

●●

●

●

●

●●●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

● ●

●

●

●●●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●●

●

●
●

●

● ●
●

●

●●

●●●

●

●
●

●
●

●

●

● ●●

●●●

●●●

●●

●

●●●●
●

●●

●●

●

●●

●●

●
●

●

●

●

● ●● ●

●

●

●

●
●

●

● ●
●

●

●
●

●

●
●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●●

●●●●

●
●

●

●
●

●

●

●
●

●

●

●● ●●●●

●

●●

●

●

●

●
●

●

●●

●●
●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

cluster 1
cluster 2
cluster 3
cluster 4

●

●●

●

●

●●
● ●

●

●

●●

●

●
●

●

●
●●

●

●

●

●

● ●

●

●
●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

● ●

● ●
●

●
● ●

●
●

●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●
●●

●

●●●

●

●

●

●

●

●

●
●●

●●

●●
●

●

●
●●

●●

●●
●●●● ●●

●● ●

●●●●

●●

●●

●● ●
●●

●●●●
●

●

●●
●●

●

●●
●●

●

● ●

●

●● ●
●●

●
●●

●

●

●

●

●
●

●● ●●

●

●●●
●●

●

●
●

●
●

● ●
● ●

● ●
●●

●

●●

●

●

●●●

●●●

●

●

●●

●

●

●
●

●●

●

●

● ●

●

●
●

●

●

●
●
●

●

●

●
●
●

●

●

●

●
●

●
●●

●

●
●

●
●●

●
●

●

●

●

●
●

●●●

●● ●

●

●

●●●●●

●

●
● ●

●

●

●●

● ●

●
●

●
●

●●
●

●

●
●●

●●
●

●

●

●

●
●

●●
●

●●
●

●
●●

●

●
●

●
●● ●

●

●

●

●●
● ●●

●●
●

●●
●●

●

●
●●

●

●
●

●
●
●●●●

●●

●
●● ●

●
●● ●

●

●● ●●

●

●●

●

●
●

●

●

●

●

●

●

●●

●●

●●
●●●

●● ● ●

●
●

●

●
●

●
●

●●
●● ●

●● ●

●●● ●
●
●

●
●● ●●●

● ●
●

●●

●●●

●
●

● ●
●

●
●

● ● ●

●

●

●

●
●

●
●

●
●●

●

●

●

●

●

●

●
●

●

●
●

●● ●

●

●

●

●
●

●

●
●

●
●●

●●●●

●

●

●
●

●

●

●●
●●

−2 −1 0 1 2

−
2

−
1

0
1

2

K−means vs. PCA

principal component 4

pr
in

ci
pa

l c
om

po
ne

nt
 5

●

●
●

●

●
●

●
● ●

●
●

●

●
●

●
●

●

●
●

●
●

●

●

●
●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●
●●

●●

●

●

●
●●

●●

●●●● ●●

● ●

●●●●●●

● ●
●●

●●●●
●●●

●●●●
●●

●
●●●

●

●
●

●● ●●

●

●●
●●

●

●
●

●
●

●
● ●

●
●

●

●

●

● ●●●
●

●

●

●● ●

●

●

●

●
●

●
●

●●
●

●

●
●

●

●

●
●●

●

●
●

●
●●

●

●
●●

●●
●● ●

●●

●●
●●

●

●●

●

●

●●

●●

●●
●●●● ● ●

●
●

●

●
●

●
●

●●
●● ●

●● ●

●●● ●
●
●

●
●●●

● ●
●

●●

●●●
●

●
●

●

●

●

●

●
●

●
●

●
●●

●

●

●

●

●
●

●
●

●● ●
●●●

●
●

●●

●

●
●

●●

●

●●●

●

●

●

●

●●●●

●●● ●
●●

●

● ●

●

●●

●

● ●
● ●

● ●
●●

●

●●

●

●

●
●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●
●●

●

●

●

●
●

●

●

●●
●

●

●

●

●

cluster 1
cluster 2
cluster 3
cluster 4

Figure 17: (lhs) total within-cluster dissimilarities for increasing K = 1, . . . , 10, (middle) 4-

means clustering w.r.t. the first two principal components, (rhs) 4-means clustering w.r.t. the

last two principal components.

sports cars, in Figure 17 (middle) they are colored according to the 4 clusters from 4-means clus-

tering. Remarkable is that in 4-means clustering we obtain sharp color borders w.r.t. the first

two principal components of the PCA. This expresses that 4-means clustering essentially uses

the first two principal components for clustering. This is further supported by Figure 17 (rhs)

which shows the clusters w.r.t. the last two principal components. In this case the colored dots

are completely mixed, which means that small singular values are less important for K-means

clustering.

cluster 1 cluster 2 cluster 3 cluster 4

number of cars 59 145 33 238

sports cars 50 0 1 21

in % 85% 0% 3% 9%

Table 4: K-means clustering of sports cars for K = 4.

Table 4 summarizes the K-means clustering results w.r.t. sports cars (expert judgment) for

K = 4. Interestingly, most of the sports cars belong to cluster 1 and a couple of sports cars

fall into cluster 4 (which contains roughly 50% of all cars). Thus, cluster 1 could be called the

“sports car cluster”, and cluster 4 may need further analysis.

4.3 K-medoids clustering

4.3.1 Methodology and algorithm

K-medoids clustering is a centroid-based method that is closely related to K-means clustering.

The main difference between these two methods is that the K-medoids clustering uses explicit

data points xi as cluster centers, whereas the sample means µk of the K-means clustering

typically do not belong to the observed data points X . Moreover, the K-medoids clustering

may consider dissimilarity measures different from squared Euclidean distances. The K-medoids

method is more robust than the K-means clustering if we choose dissimilarity measures that

can deal with outliers, for instance, an absolute value distance gives less weight to outliers than

28

 Electronic copy available at: https://ssrn.com/abstract=3439358

a squared Euclidean distance. The resulting cluster centers are called medoids because they are

located most centrally within the cluster. We minimize the following objective function

arg min
(c1,...,cK)⊂X

K∑
k=1

∑
xi∈Ck∩X

d(ck,xi), (4.4)

where the medoids ck ∈ X = {x1, . . . ,xn} belong to the data points, where d(·, ·) is a dissimi-

larity function on Rq, and where the clusters around the medoids ck are given by

Ck = {x ∈ X ; d(ck,x) < d(cl,x) for all l 6= k} , (4.5)

with a deterministic rule if we do not have a unique best matching cluster center ck.

Again the global minimum is difficult to find, therefore, we are typically satisfied by a local

minimum. This can be found by the partitioning around medoids (PAM) algorithm which goes

back to Kaufman–Rousseeuw [16, 17].

Partitioning Around Methods Algorithm.

(0) Choose initial medoids c1, . . . , cK ∈ X , allocate each data point xi ∈ X to its closest

medoid, see (4.5), and calculate the resulting total within-cluster dissimilarity (TWCD)

TWCD =

K∑
k=1

∑
xi∈Ck∩X

d(ck,xi).

(1) Repeat until no decrease in total within-cluster dissimilarity TWCD is observed: for each

medoid ck and for each non-medoid xi:

(a) swap the role of ck and xi, and allocate each data point to the closest medoid under

this new configuration;

(b) calculate the new total within-cluster dissimilarity;

(c) if the total within-cluster dissimilarity increases then reject the swap, otherwise keep

the swap.

Remarks.

• The are many variants of the swap step (1a). In the algorithm below we use the original

version of Kaufman–Rousseeuw [16, 17] which is described in Algorithm 2 of Schubert–

Rousseeuw [28]. This latter reference also provides several (computational) improvements.

• Note that in the PAM algorithm we only work on the data X because the medoids are also

part of this data set. Therefore, all dissimilarities d(xi,xl) only need to be calculated once

(resulting in a matrix), and then the PAM algorithm can entirely be calculated based on

this dissimilarity matrix. For this reason, the algorithm works with any dissimilarity func-

tion which can directly be provided to the algorithm in terms of the resulting dissimilarity

matrix.

29

 Electronic copy available at: https://ssrn.com/abstract=3439358

Listing 8: K-medoids clustering in R using pam

1 library(cluster)

2

3 # pamonce=FALSE is the original version of Kaufman -Rousseeuw (1987 ,1990)

4 set.seed (100)

5 pam(X, k=4, metric =" manhattan", diss=FALSE , pamonce=FALSE)

4.3.2 Example, revisited

We revisit the car models example of Listing 1. In Listing 8 we provide the R code to perform

the K-medoids clustering with the pam algorithm of the R library cluster. We choose K = 4

clusters, as dissimilarity function we use the Manhattan metric which is the sum of the absolute

values of the differences, and we set diss to FALSE which means that we provide the data matrix

X. Instead, as described above, we could also provide a dissimilarity matrix which would allow

us to choose an arbitrary dissimilarity function d(·, ·).

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●● ●●

●●

●
●

●
●● ●●

●●

●●

●

●

●

●

●

●●
●●

●● ●●

●●

●

●●

●●

●●

●●
● ●

●●
●●

●

●●

●
●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●● ●●●●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

● ● ●

●

●

●

●

●

●

●
●

●

●
●

●

●● ●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●
●

●
●

●
●

●

●

●

●

●

●●
●●

●

●●
●

●

●

●

●●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●
●

●
●

●

●

●

●●

●
●

●

●

●

●●

●

●

● ●
●●

●

●●

●

●

●

●

●

●
●

●

●
●

●

● ●
●

●

●●

●

●

●●

●

●
●

●
●

●

●

● ●●

●●●

●●●

●●

●

●●●●
●

●

●

●
●

●●

●

●●

●●

●

●

●

●●

●

●

●

●
●

●

● ●● ●

●

●

●

●
●

●●

● ●
●

●

●
●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

K−means vs. PCA

principal component 1

pr
in

ci
pa

l c
om

po
ne

nt
 2

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●
●● ●●●

●
●

●● ●●

●●

●

●

●

●

●●
●●

●●

●●

●●

●●

●●

●●
●

●●
●●●●

●

●

●

●●

●

●

●

●●●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

● ●

●

●

●●●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●●

●

●
●

●

● ●
●

●

●●

●●●

●

●
●

●
●

●

●

● ●●

●●●

●●●

●●

●

●●●●
●

●●

●●

●

●●

●●

●
●

●

●

●

● ●● ●

●

●

●

●
●

●

● ●
●

●

●
●

●

●
●●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●●

●●●●

●
●

●

●
●

●

●

●
●

●

●

●● ●●●●

●

●●

●

●

●

●
●

●

●●

●●
●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

cluster 1
cluster 2
cluster 3
cluster 4

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●● ●●

●●

●
●

●
●● ●●

●●

●●

●

●

●

●

●

●●
●●

●● ●●

●●

●

●●

●●

●●

●●
● ●

●●
●●

●

●●

●
●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●● ●●●●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

● ● ●

●

●

●

●

●

●

●
●

●

●
●

●

●● ●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●
●

●
●

●
●

●

●

●

●

●

●●
●●

●

●●
●

●

●

●

●●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●
●

●
●

●

●

●

●●

●
●

●

●

●

●●

●

●

● ●
●●

●

●●

●

●

●

●

●

●
●

●

●
●

●

● ●
●

●

●●

●

●

●●

●

●
●

●
●

●

●

● ●●

●●●

●●●

●●

●

●●●●
●

●

●

●
●

●●

●

●●

●●

●

●

●

●●

●

●

●

●
●

●

● ●● ●

●

●

●

●
●

●●

● ●
●

●

●
●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

K−medoids vs. PCA

principal component 1

pr
in

ci
pa

l c
om

po
ne

nt
 2

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●
●●

●●
●●

●●●●

●
●

●

●
●

●

●

●
● ●

●

●

●● ●●●●

●

●●

●

●

●

●
●

●

●

●●●

●●●

●

●

●

●

●
●

●●

●

●●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●●

●
●

●
●●

●
●

●
●●

●●

●

●

●

●

●●
●●

●●

●●

●●

●●

●●

●●
●

●●
●●●●

●

●●●

●

●

●

●●●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

● ●

●

●

●

●●●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●●
●

●

●

●

●

●
●

●

●

●
●

●
●

●●

●
●

●

● ●
●

●

●●

●●●

●

●
●

●
●

●

●

● ●●●●

●

●●●●
●

●●

●●

●

●●

●●

●

●

●

●

● ●● ●

●

●

●

●
●

● ●
●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

cluster 1
cluster 2
cluster 3
cluster 4

Figure 18: (lhs) 4-means clustering w.r.t. the first two principal components, (rhs) 4-medoids

clustering w.r.t. the first two principal components and using the Manhattan metric as dissimi-

larity function.

The results are provided in Figure 18. The left-hand side gives the K-means result with the

squared Euclidean distance, and the right-hand side gives the K-medoids results for the Manhat-

tan distance, both with K = 4. We observe that for the Manhattan distance the cluster centers

(black dots) are closer together, this comes from the fact that the L1-norm punishes outliers

less heavily than the squared Euclidean norm. Besides this, the clustering takes a rather similar

form in the two methods.

4.4 Clustering using Gaussian mixture models

The K-means algorithm is based on the implicit assumption that dissimilarity is roundish.

Gaussian mixture models (GMMs) are distribution-based clustering methods that provide more

30

 Electronic copy available at: https://ssrn.com/abstract=3439358

flexibility with respect to this assumption.

4.4.1 Methodology

Observe that all methods studied above have not been based on any assumptions on how the

features xi ∈ X could have been generated. In this section we underpin a probabilistic model

on how these features could have been generated.

Model 4.1 Choose hyperparameter K ∈ N. Assume that the features x1, . . . ,xn are i.i.d. real-

izations from the density of a weighted sum of normal distributions

f(x) =
K∑
k=1

1

(2π|Σk|)q/2
exp

{
−1

2
(x− µk)>Σ−1k (x− µk)

}
pk, (4.6)

with mean vectors µk ∈ Rq, positive definite covariance matrices Σk ∈ Rq×q, and having proba-

bilities (weights) p = (p1, . . . , pK) ∈ SK from the (K − 1)-unit simplex

SK =

{
p ∈ RK ; pk ≥ 0 and

K∑
k=1

pk = 1

}
.

Density (4.6) describes a multivariate GMM with parameter θ = (µk,Σk, pk)k∈K, that is, K mul-

tivariate Gaussian distributions are mixed with mixing probability p ∈ SK . The mean vectors

µk ∈ Rq play the role of the K cluster centers that we try to find. Based on i.i.d. observations

x1, . . . ,xn one is tempted to directly estimate the parameter θ with maximum likelihood es-

timation (MLE) methods, which provide estimates for the cluster centers. The log-likelihood

function is given by

`(xi)i(θ) =
n∑
i=1

log

(
K∑
k=1

1

(2π|Σk|)q/2
exp

{
−1

2
(xi − µk)>Σ−1k (xi − µk)

}
pk

)
. (4.7)

Unfortunately, this MLE problem leads to a non-trivial optimization problem, therefore, we are

going to study a modified problem which can be solved more easily.

Instead of representing the density of the cases as a weighted sum of Gaussian distributions (4.6),

we introduce a latent variable Z = (Z1, . . . , ZK) indicating from which particular Gaussian

distribution a selected observation x has been sampled from. Assume that Z takes values in

S◦K =

{
{0, 1}K ;

K∑
k=1

Zk = 1

}
⊂ SK . (4.8)

That is, Z takes values in the corners of the (K − 1)-unit simplex SK . This is a categorical

random variable represented in one-hot encoding, we refer to our tutorial [7] for one-hot encoding.

Set

pk = P[Zk = 1] > 0, for k ∈ K.

Note that we exclude the boundaries pk = 0 because this is equivalent to a reduction of the

number K of cluster centers. Then, we can re-express the multivariate GMM as follows

f(x) =
∑
z∈S◦K

f(x, z),

31

 Electronic copy available at: https://ssrn.com/abstract=3439358

with joint density for (x, z) ∈ Rq × S◦K

f(x, z) = fN (x|z)p(z) =
K∑
k=1

zk
1

(2π|Σk|)q/2
exp

{
−1

2
(x− µk)>Σ−1k (x− µk)

}
pk. (4.9)

Under the assumption of having i.i.d. data (xi, zi), i = 1, . . . , n, from the joint density (4.9) we

receive log-likelihood function (in θ)

`(xi,zi)i(θ) =
n∑
i=1

K∑
k=1

zki

(
−q

2
log(2π|Σk|)−

1

2
(xi − µk)>Σ−1k (xi − µk)

)
+

n∑
i=1

K∑
k=1

zki log(pk)

=

n∑
i=1

K∑
k=1

zki log fN (xi|µk,Σk) +

n∑
i=1

K∑
k=1

zki log(pk). (4.10)

Comparing this to (4.7) we observe that we get rid off the summation within the logarithm

because we replace the probabilities pk by observations zki . The first term on the right-hand side

only depends on the Gaussian parameters (µk,Σk)k, and classical MLE on Gaussian densities

can be performed to estimate these parameters. That is, we receive MLEs

µ̂k = µ̂k ((xi, zi)1≤i≤n) =

∑n
i=1 z

k
i xi∑n

i=1 z
k
i

, (4.11)

and

Σ̂k = Σ̂k ((xi, zi)1≤i≤n) =

∑n
i=1 z

k
i (xi − µ̂k) (xi − µ̂k)

>∑n
i=1 z

k
i

. (4.12)

The second term describes a multinomial distribution depending on the parameter p = (pk)k ∈
SK , which can also be estimated with MLE

p̂k = p̂k ((zi)1≤i≤n) =
1

n

n∑
i=1

zki . (4.13)

At the first sight, this does not seem to be useful because the latent variables Zi have not been

observed. The expectation-maximization (EM) algorithm is an appropriate tool to estimate

such models in the absence of observations for latent variables.

4.4.2 Expectation-maximization algorithm

The EM algorithm consists of two steps: (a) estimate the latent variables (Zi)i from (xi)i and

θ̂, where θ̂ is an estimate for θ, and (b) estimate the model parameter θ from (xi, Ẑi)i, where

Ẑi are estimates for Zi. This is similar to the K-means algorithm on page 26, where (a) we

re-assess the best matching clusters using the estimated cluster centers, (b) we compute the

cluster centers µk based on the estimated clusters.

Step (a) is called E-step for expectation step. The posterior probability of Zk = 1, given

observation x, is given by

pk(θ|x) = P[Zk = 1|x] =
|Σk|−q/2 exp

{
−1

2(x− µk)>Σ−1k (x− µk)
}
pk∑K

j=1 |Σj |−q/2 exp
{
−1

2(x− µj)>Σ−1j (x− µj)
}
pj
.

32

 Electronic copy available at: https://ssrn.com/abstract=3439358

Therefore, the posterior estimate for Zk, after having observed x for the Gaussian mixture

random variable, is

Ẑk(θ|x) = E[Zk|x] = pk(θ|x). (4.14)

This posterior estimate is used as estimate for the hidden variables Z.

Step (b) is called M-step for maximization step because we apply MLE.

Expectation-Maximization Algorithm.

(0) Choose an initial parameter θ(0) =
(
µ
(0)
k ,Σ

(0)
k , p

(0)
k

)
k∈K

.

(1) Repeat for t ≥ 1:

(a) E-step: given parameter θ(t−1) =
(
µ
(t−1)
k ,Σ

(t−1)
k , p

(t−1)
k

)
k∈K

we estimate the latent

variables Zi, i = 1, . . . , n, by, see (4.14),

Ẑ
(t)

i =
(
p1(θ

(t−1)|xi), . . . , pK(θ(t−1)|xi)
)
∈ SK .

(b) M-step: calculate the MLE θ(t) =
(
µ
(t)
k ,Σ

(t)
k , p

(t)
k

)
k∈K

based on the (estimated) ob-

servations (xi, Ẑ
(t)

i)1≤i≤n, see (4.11)-(4.13)

µ̂
(t)
k =

∑n
i=1 pk(θ

(t−1)|xi)xi∑n
i=1 pk(θ

(t−1)|xi)
,

Σ̂
(t)
k =

∑n
i=1 pk(θ

(t−1)|xi)
(
xi − µ̂(t)

k

)(
xi − µ̂(t)

k

)>
∑n

i=1 pk(θ
(t−1)|xi)

,

p̂
(t)
k =

1

n

n∑
i=1

pk(θ
(t−1)|xi).

Comparison of the K-means algorithm and the EM algorithm:

(a) The E-step calculates a posterior expectation in the EM algorithm, whereas in the K-

means algorithm we do a “hard assessment” by allocating each case to the best matching

cluster center.

(b) The M-step is the same in both algorithms, recalculating the model parameters after the

cases have been re-allocated to the new best matching cluster centers.

4.4.3 Justification of the EM algorithm (the fast reader can skip this section)

Since the latent variables (Zi)i are not observable, we replace them by their posterior expectation

(4.14). In view of (4.10), we interpret this as considering the expected log-likelihood conditioned

33

 Electronic copy available at: https://ssrn.com/abstract=3439358

on having observed (xi)i, using the assumed i.i.d. property we have

E
[
`(xi,Zi)i(θ)

∣∣ (xi)i] =

n∑
i=1

K∑
k=1

E[Zki |xi]
(
−q

2
log(2π|Σk|)−

1

2
(xi − µk)>Σ−1k (xi − µk)

)

+
n∑
i=1

K∑
k=1

E[Zki |xi] log(pk).

We analyze this expected log-likelihood.

(1) We have for any density π ∈ SK , using Jensen’s inequality,

log fθ(x) = log
∑
z∈S◦K

fθ(x, z) = log
∑
z∈S◦K

π(z)
fθ(x, z)

π(z)
(4.15)

≥
∑
z∈S◦K

π(z) log

(
fθ(x, z)

π(z)

)
= EZ∼π [log (fθ(x,Z))] +K = L(π; θ),

where K is a constant not depending on θ. The right-hand side θ 7→ L(π; θ) is a concave

function in θ (for any π ∈ SK), and, thus, it has a unique maximum. This is exactly what

we use in the EM algorithm in the M-step.

(2) Moreover, one can show that the posterior choice π = p(θ|x) ∈ SK provides an equality

in (4.15), i.e. log fθ(x) = L(p(θ|x); θ), this motivates the E-step.

Combining (1) and (2): We initialize θ(0) and set π = p(θ(0)|x). The M-step implies that we

find a maximum in the new parameter θ(1). From (4.15) we derive

fθ(1)(x) ≥ L
(
p(θ(0)|x); θ(1)

)
.

Using (2) we update π = p(θ(1)|x), which implies

fθ(1)(x) = L
(
p(θ(1)|x); θ(1)

)
≥ L

(
p(θ(0)|x); θ(1)

)
.

Iterating this for t ≥ 1 implies that we find a sequence of parameters (θ(t))t≥0 with

. . . ≤ fθ(t−1)(x) ≤ fθ(t)(x) ≤ fθ(t+1)(x) ≤ . . . ,

and therefore the EM algorithm converges to a (local) maximum of the log-likelihood function.

4.4.4 Example, revisited

We revisit the car models example of Listing 1. In Listing 9 we provide the R code to perform

the GMMs clustering with GMM of the R package ClusterR. Pay attention: this package only

estimates diagonal covariance matrices Σk. For general covariance matrices and many more

options we refer to the R package mclust. We choose K = 4 clusters.

We observe quite some differences between the K-means results and the GMM results, see Figure

19. Interesting is that the multivariate Gaussian distribution with the magenta cluster center

has the biggest variance. For this reason, this magenta cluster center is moved more towards the

34

 Electronic copy available at: https://ssrn.com/abstract=3439358

Listing 9: GMM clustering in R using GMM from the library ClusterR

1 library(ClusterR) # GMM only considers diagonal covariance matrices!

2

3 set.seed (100)

4 K_res <- GMM(X, gaussian_comps =4, dist_mode =" eucl_dist",

5 seed_mode =" random_subset", em_iter=5, seed =100)

6

7 predict_GMM(X, K_res$centroids , K_res$covariance_matrices , K_res$weights)$cluster_labels

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●● ●●

●●

●
●

●
●● ●●

●●

●●

●

●

●

●

●

●●
●●

●● ●●

●●

●

●●

●●

●●

●●
● ●

●●
●●

●

●●

●
●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●● ●●●●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

● ● ●

●

●

●

●

●

●

●
●

●

●
●

●

●● ●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●
●

●
●

●
●

●

●

●

●

●

●●
●●

●

●●
●

●

●

●

●●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●
●

●
●

●

●

●

●●

●
●

●

●

●

●●

●

●

● ●
●●

●

●●

●

●

●

●

●

●
●

●

●
●

●

● ●
●

●

●●

●

●

●●

●

●
●

●
●

●

●

● ●●

●●●

●●●

●●

●

●●●●
●

●

●

●
●

●●

●

●●

●●

●

●

●

●●

●

●

●

●
●

●

● ●● ●

●

●

●

●
●

●●

● ●
●

●

●
●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

K−means vs. PCA

principal component 1

pr
in

ci
pa

l c
om

po
ne

nt
 2

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●
●● ●●●

●
●

●● ●●

●●

●

●

●

●

●●
●●

●●

●●

●●

●●

●●

●●
●

●●
●●●●

●

●

●

●●

●

●

●

●●●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

● ●

●

●

●●●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●●

●

●
●

●

● ●
●

●

●●

●●●

●

●
●

●
●

●

●

● ●●

●●●

●●●

●●

●

●●●●
●

●●

●●

●

●●

●●

●
●

●

●

●

● ●● ●

●

●

●

●
●

●

● ●
●

●

●
●

●

●
●●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●●

●●●●

●
●

●

●
●

●

●

●
●

●

●

●● ●●●●

●

●●

●

●

●

●
●

●

●●

●●
●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

cluster 1
cluster 2
cluster 3
cluster 4

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●● ●●

●●

●
●

●
●● ●●

●●

●●

●

●

●

●

●

●●
●●

●● ●●

●●

●

●●

●●

●●

●●
● ●

●●
●●

●

●●

●
●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●● ●●●●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

● ● ●

●

●

●

●

●

●

●
●

●

●
●

●

●● ●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●
●

●
●

●
●

●

●

●

●

●

●●
●●

●

●●
●

●

●

●

●●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●
●

●
●

●

●

●

●●

●
●

●

●

●

●●

●

●

● ●
●●

●

●●

●

●

●

●

●

●
●

●

●
●

●

● ●
●

●

●●

●

●

●●

●

●
●

●
●

●

●

● ●●

●●●

●●●

●●

●

●●●●
●

●

●

●
●

●●

●

●●

●●

●

●

●

●●

●

●

●

●
●

●

● ●● ●

●

●

●

●
●

●●

● ●
●

●

●
●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

GMM(diagonal) vs. PCA

principal component 1

pr
in

ci
pa

l c
om

po
ne

nt
 2

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●●●

●●●●

●
●

●

●
●

●

●

●
● ●

●

●

●● ●●●●

●

●●

●

●

●

●
● ●

●

●

●●

●●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●
●
●

●
●

●
●●

●
●

●
●●

●●

●

●

●

●

●●
●●

●●

●●

●●

●●

●●

●●
●

●●
●●●●

●

●●●

●

●

●

●●●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

● ●

●

●

●

●●●

●

●

●

●

●●

●

●●
●

●

●

●

●●

●

●

●

●

●
●

●

●
●●

●

●

●●
●

●

●

●

●
●

●
●

●
●
●●

●

●●

●
●

●

● ●
●

●

●●
●

●
●

●
●

●

●

● ●●●●●●●●
●

●●

●

●●

●●

●

●

●

●

●

● ●● ●

●

●

●

●
●

● ●
●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●●●

●

●

●

●

●

●
●

●

●●●

●●●

●●●

●●●

●

●●●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

cluster 1
cluster 2
cluster 3
cluster 4

Figure 19: (lhs) 4-means clustering w.r.t. the first two principal components, (rhs) GMM clus-

tering with diagonal covariance matrices and K = 4.

origin of the picture (compared to K-means) and it can still capture the outliers in the second

principal component (because of its large variance parameter).

Remark. We have used the R package ClusterR which uses the assumption that the covariance

matrices Σk are diagonal. Alternatively, we could use the R package mclust which allows for

much more modeling flexibility. We can decouple the covariance matrices Σk as follows

Σk = λkDkAkD
>
k ,

where λk is a scalar, Dk is an orthogonal matrix containing the eigenvectors, and Ak is a diagonal

matrix that is proportional to the eigenvalues of Σk. mclust then allows for different versions

like EVI or VII. The first letter stands for the volume λk, the second letter for the shape Ak,

and the third letter for the orientation Dk. Thus, EVI means Equal volumes λk = λ, Variable

shapes Ak (ellipsoids), and the orientation is the Identity Dk = 1 (coordinate axes). For more

details we refer to Table 1 in Fraley–Raftery [9].

4.4.5 Variational autoencoder: an outlook

There is an interesting connection between clustering with multivariate GMMs and autoen-

coders which have been introduced in Section 3, above. This connection is related to variational

35

 Electronic copy available at: https://ssrn.com/abstract=3439358

autoencoders (VAEs) introduced and studied in Kingma–Welling [18].

The starting point of this connection is the joint density f(x, z) given in (4.9). In abstract

terms, this joint density is given by

f(x, z) = f(x|z)p(z),

where p(z) is a discrete distribution of the latent variable Z, describing the choice of the cluster

center, and where f(x|z) is the density of the observation, given cluster center Z = z. This

is exactly the structural form as being used in VAEs, except that the discrete latent variable

is replaced by an absolutely continuous latent variable Z. Assume that there is an (unknown)

model parameter θ such that the joint density of the observation and the absolutely continuous

hidden variable is given by

fθ(x, z) = fθ(x|z)pθ(z).

Kingma–Welling [18] design an autoencoding variational Bayes (AEVB) algorithm to estimate

the parameter θ and to infer the latent variable Z (doing approximate posterior inference).

Assume that Z = z ∈ Rp is a low dimensional latent variable that induces a high dimensional

feature x ∈ Rq via the law fθ(x|z). We may now define an encoder Ẑ(θ|x) = Eθ[Z|x] which

infers the latent variable Z, having observed x, this is the E-step from the EM algorithm above;

and we get a probabilistic decoder that describes fθ(x|z), which relates to the M-step in the

EM algorithm. Intuitively speaking, the AEVB algorithm tries to minimize a reconstruction

error, and in this sense, Ẑ(θ|x) reflects a p dimensional approximation (description) of a high

dimensional feature x ∈ Rq.

5 Topological approaches for dimension reductions

So far, we have been discussing two different types of methods. The first type of methods (PCA

and BNNs) has been used to reduce the dimension of the data. The main objective in this

dimension reduction has been to minimize the reconstruction error of the original data. The

second type of methods (K-means, K-medoids and GMMs) has been aiming at categorizing

data into clusters of similar cases. The methods that we are going to study in the remainder of

this tutorial mainly aim at visualizing high dimensional data. This is also done by dimension

reduction, but the main objective in this section is to keep the (local) topology of the data as far

as possible. This is motivated by the idea that if X is a lower dimensional manifold in Rq, then

it can be described by lower dimensional object preserving the local topological relationships.

A simple way of motivating the following methods is multi-dimensional scaling (MDS). Assume

that the cases xi ∈ X should be illustrated by two dimensional Euclidean objects yi ∈ R2

preserving as much as possible from the original topology. MDS tries to find these points as

follows

arg min
Y=(y1,...,yn)

∑
i,j

(
d(xi,xj)− ‖yi − yj‖2

)2
.

Thus, we try to find points Y in the Euclidean plane R2 that preserve as much as possible from

the original dissimilarity (adjacency) matrix (d(xi,xj))1≤i,j≤n. This motivates the subsequent

methods that are (slightly) more sophisticated than MDS.

36

 Electronic copy available at: https://ssrn.com/abstract=3439358

Additional introductory remarks.

• We make a link to the clustering methods of the previous section. Assume that we have

cases x1, . . . ,xn ∈ X illustrated by n vertices. Connect all vertices with undirected edges

[xi,xj], and attach to each edge a distance d(xi,xj) that assesses the dissimilarity be-

tween xi and xj . A minimal spanning tree (MST) is a connected path T that visits all

vertices x1, . . . ,xn (at least once) at minimal costs
∑

[xi,xj]∈T d(xi,xj). Note that T is

automatically a tree because any loop only creates extra costs. A MST T naturally induces

a neighborhood relationship along the tree (explained by an adjacency matrix). In this

sense, a MST gives a topological representation of the cases X .

• The K-medoids clustering can be understood as a spanning tree, not necessarily a minimal

one. The K medoids c1, . . . , cK ∈ X build the skeleton of the spanning tree. 1) Connect

this skeleton by a MST TK ; and 2) connect each case xi ∈ Ck to its cluster center ck. This

provides the spanning tree of the K-medoids clustering which gives a natural proximity

relationship along the constructed spanning tree. This spanning tree has the interpretation

of possessing hubs (medoids) from which the fine distribution to all cases is done.

• A MST T is rather close to UMAPs presented in Section 5.2, below, and SOMs presented

in Section 5.3, below. A main difference is that the degree of each vertex xi is variable in

MSTs, whereas for the UMAP and the SOM we will choose a fixed degree for each vertex

which will describe proximity more locally.

5.1 t-distributed stochastic neighboring embedding

The method that we are going to study in this section is t-distributed stochastic neighbor

embedding (t-SNE) which has been developed by van der Maaten–Hinton [30].

5.1.1 Methodology

The idea behind t-SNE is to study proximity weights between all available features x1, . . . ,xn.

Dissimilar cases will receive small weights, and similar cases will attain high weights.15 Based

on these weights we will construct a low dimensional t-distribution which has a small KL diver-

gence w.r.t. these proximity weights. This t-distribution then leads us to the low dimensional

illustration of the original data. The KL divergence has been introduced in (3.6), and for two

probabilities in the (J − 1)-unit simplex, q,p ∈ SJ , it is given by

DKL(q||p) =

J∑
j=1

qj log

(
qj
pj

)
.

This reflects the gain of information if we walk from p to q. Note that the KL-divergence

is asymmetric: the role of the increased information q will be played by the original features

(because they contain all available information), and the role of p will be played by the t-

distributed approximation (because a projection leads to a loss of information).

15Proximity weights can be understood as inverse dissimilarity measures, for instance, used in minimal spanning

trees (MSTs).

37

 Electronic copy available at: https://ssrn.com/abstract=3439358

Step 1. We select two cases xi,xj ∈ X , and we define the conditional probability weight

qj|i =
exp

{
− 1

2σ2
i
‖xi − xj‖22

}
∑

k 6=i exp
{
− 1

2σ2
i
‖xi − xk‖22

} , for i 6= j. (5.1)

The meaning and the choice of σi > 0 is described in Remarks 5.1, below. qj|i quantifies the

similarity of xj to xi. We make these weights symmetric by defining

qi,j =
1

2n

(
qj|i + qi|j

)
, for i 6= j. (5.2)

Observe that q = (qi,j)i 6=j ∈ SJ is a distribution from the (J−1)-unit simplex with J = (n2−n)/j

(note that we exclude the “diagonal” i = j). This distribution q is used to explain the inner

geometry of the features {x1, . . . ,xn} = X ⊂ Rq. The parameters σi > 0 determine the

bandwidth considered in the weights qj|i (Gaussian kernels), and we typically choose smaller

values for this bandwidth in areas where the cases xi are more dense.

Step 2. We choose dimension p < q, and we aim at finding {y1, . . . ,yn} = Y ⊂ Rp such that

the following probabilities are similar to q. Define the Student-t probabilities (with 1 degree of

freedom)

pi,j =

(
1 + ‖yi − yj‖22

)−1∑
k 6=l
(
1 + ‖yk − yl‖22

)−1 , for i 6= j, (5.3)

and set p = (pi,j)i 6=j ∈ SJ .

Goal. Find locations Y = {y1, . . . ,yn} such that the KL divergence DKL(q||p) is minimized.

These locations Y provide the low dimensional illustration of the original data X .

Remarks 5.1

• The gradient descent algorithm is used to find the optimal locations Y.

• In (5.3) we directly define a low dimensional symmetric distribution p. In contrast to

(5.3), in the high dimensional case we start from an asymmetric definition (5.1) given by

(qj|i)i 6=j , which is made symmetric in a second step in (5.2). The reason for starting with

an asymmetric definition is that this approach provides us with more robustness towards

individual outliers: if we have a symmetric definition similar to (5.3) and if xi is far away

from all other points xj , then qi,j would be small for any point xj . This would imply that

the choice of yi would influence to objective function only marginally. As a result, the

position of yi would not be well-specified. This problem is circumvented by (5.1)-(5.2)

because the resulting qi,j ’s have the property
∑

j qi,j > 1/(2n) for all i.

• We choose the Student-t distribution with 1 degree of freedom because it has the nice

property that pi,j ≈ ‖yi − yj‖−22 for ‖yi − yj‖2 →∞.

• The remaining parameter to be selected is the bandwidth given by σi > 0. Every choice σi
provides a different conditional distribution q•|i = (qj|i)j 6=i. Usually, a smaller value for σi

38

 Electronic copy available at: https://ssrn.com/abstract=3439358

is more appropriate in denser regions. A good choice for σi keeps the perplexity Perp(q•|i)

constant in i, where the perplexity is a measure for the effective number of neighbors. It

is given by

Perp(q•|i) = exp
{
H(q•|i)

}
= exp

−∑
j 6=i

qj|i log2(qj|i)

 ,

where H(q•|i) is the Shannon entropy.

5.1.2 Example, revisited

We revisit the car models example of Listing 1. In Listing 10 we provide the R code to perform

Listing 10: t-SNE code in R using tnse

1 library(tsne)

2

3 set.seed (100)

4 tsne(X, k=2, initial_dim=ncol(X), perplexity =30)

the t-SNE dimension reduction using the tsne package of R. We choose a p = 2 dimensional

illustration, and we minimize the KL divergence using the gradient descent algorithm. This

algorithm needs a seed and correspondingly the solution will depend on the choice of this seed.

●

● ●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●
●

●

●

●

●
●

●●

●●

●●

●

●

●

●

●

●

●
●
●

●●

●
●

●●

●

●

●

●●

●●

●●

●

●

●●

●
●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

● ●
● ●●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

● ●● ●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●
●

● ●

●

● ●●

●
●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
● ●

●
●

●

●●

●
●

●
●

●

●●

●

●

●●
●●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●
●

● ●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●●
● ●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●●●
●

●
●

●
●
●

●

●● ● ●

−40 −20 0 20 40

−
40

−
20

0
20

40

t−SNE with seed 100

component 2

co
m

po
ne

nt
 1

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●●

●

●

●

●

●●

●
●

●●

●●

●

●

●●

●
●
●

●●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

● ●
● ●●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

● ●●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●●
●●

●

●●

●

●

●

●

●
●

●

●

●●
● ●

●

● ●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●●●

● ●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●
●

●●

●

●

●

●
●

●

●

●

● ●
● ●●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●●●

●

●

●

●
●

●

●
●

●

●

●

●

tau>=21
17<=tau<21
tau<17 (sports car)

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●●

●

●

●

● ●

●●

●●

●●

●
●

● ●

●

●

●

●
●

●●

●●

●●

●

●

●

●●

●
●

●●

●

●

●
●

● ●

●

● ●

●●
●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

● ●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

● ●●●

●

●
●

● ●

●

●●

●

●

●

●

●

●

●●

●

● ●

●
●

●
●

●●

●

●

●●

●

●

●

●

●

●
●

●

●●

● ●●

● ●●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●
●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●
●
●

●
● ●

● ●

−20 0 20 40

−
40

−
20

0
20

40

t−SNE with seed 123

component 2

co
m

po
ne

nt
 1

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●●

●
●

● ●

●●

●●

●●

●●

●

●

●
●

●

●●
●

●

●
●

●
●

●

●

●
●

●

●

●●

●●

●

●

●

●●●

●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

● ●

●

●
●

●
●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●
●

● ●

●

●●

●

●

●●

●●

●

●

●●

● ●●

● ●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●●●
● ●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●●
●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

● ●
●

●●

●

●

●

●

●

tau>=21
17<=tau<21
tau<17 (sports car) ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●●

●

●

●

●●

●●
●
●

●●

●

●

●

●

●

● ●

●
●

●
●

●●

●
●

●

●
●

●●

●
●

●● ●

●

●
●

●●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●
●

●
●

●

●

●

●

●●

●

●
●

●

●●● ●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

● ●

●

●

●

●

●● ●
●

●●

●
●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●
● ●

●
●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●
●
●

●
●●

●
●

−40 −20 0 20 40

−
20

0
20

40
t−SNE with seed 195

component 2

co
m

po
ne

nt
 1

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●
●

●●
●●

●
●

●

●

●

●
●

●

●●

●
●

●● ●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●●
●●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●
●

●

●

●

●

●●

●

●

●●

●
●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
● ●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

tau>=21
17<=tau<21
tau<17 (sports car)

Figure 20: t-SNE illustration of the data X using three different seeds in the gradient descent

algorithm.

In Figure 20 we provide the resulting illustrations. We observe that the solutions differ for

different seeds, however, they have quite some similarities in terms of the red dots (sports cars

with τ < 17), green dots (cars with 17 ≤ τ < 21) and blue dots (cars with τ ≥ 21). We find

common clusterings in the three plots, there is a red cluster that appears in all three plots, and

there is a small blue one which appears at least in the middle plot and the one on the right-hand

side. The green dots build a lengthy cluster which has a similar structure in all three graphs. As

described on page 20 we could use procrustes analysis to study the resulting differences in the

plots of Figure 20, procrustes analysis would align the graphs so that they can be superimposed

and compared. We refrain from doing so here.

39

 Electronic copy available at: https://ssrn.com/abstract=3439358

If we interpret the results of Figure 20 w.r.t. sports cars we see that there are rather clear cases

of sports cars, and cases which are less obvious. In some sense this is similar to the findings in

K-means clustering, see Table 4. This concludes the t-SNE example.

5.2 Uniform manifold approximation and projection

Uniform manifold approximation and projection (UMAP) is a manifold learning technique for

dimension reduction. It is based on Riemannian geometry and algebraic topology. In this

tutorial, we are not going into the mathematical details, but we refer to work of McInnes et

al. [24]. This work is important for the justification of the steps proposed below, the theoretical

foundations of UMAP are outlined in Section 2 of McInnes et al. [24], and Section 3 of this

reference is providing the computational part, which we are going to recall here briefly.

5.2.1 Methodology

UMAP is based on the assumption that the data X ⊂ Rq is lying on a lower dimensional

manifold, and it aims at learning the local structure to find the lower dimensional representation.

The basic learning structure of the algorithm is similar to t-SNE, and has the following two steps.

Step 1. Assume that the dissimilarity measure d : Rq × Rq → R+ is a metric in Rq. Choose

a hyperparameter k ∈ N and calculate the k nearest neighbors of xi ∈ X w.r.t. d(·, ·); we

also refer to the MST discussion on page 37. We denote these k nearest neighbors of xi by

Xi = {xi1 , . . . ,xik}. Based on these k nearest neighbors we calculate the distance to the closest

neighbor

%i = min
{
d(xi,xij); 1 ≤ j ≤ k, d(xi,xij) > 0

}
, (5.4)

and we choose a bandwidth σi > 0 such that

k∑
j=1

exp

{
−

max{0, d(xi,xij)− %i}
σi

}
= log2(k).

This allows us to define proximity weights for a directed weighted graph. The vertices of the

graph are the cases {x1, . . . ,xn} = X and the directed weighted edges between xi and its k

nearest neighbors Xi are obtained by the weights

qij |i = exp

{
−

max{0, d(xi,xij)− %i}
σi

}
.

This is similar to the construction in (5.1), but we only consider the k nearest neighbors here.

Next, we are going to turn this asymmetric proximity relationship into a symmetric one, in

analogy to step (5.2) in the t-SNE method. Define by A ∈ Rn×n+ the adjacency matrix on X
obtained from (qij |i)i,j . A symmetric (undirected) version is defined by

Q = A+A> −A ◦A>,

where ◦ denotes the Hadamard product.16 The matrix Q = (qi,j)i,j provides an undirected

weighted graph on the vertices X describing the topology of the original data.

16The Hadamard product is the element wise product.

40

 Electronic copy available at: https://ssrn.com/abstract=3439358

Step 2. We choose dimension p < q, and we aim to find a low dimensional representation

Y = {y1, . . . ,yn} ⊂ Rp of the original data X . The idea behind UMAP in this second step is

to design a force directed graph that is similar in topology to the original one. Since this step

is technically challenging we will not provide the details here, but refer to Algorithms 4 and 5

in McInnes et al. [24]. We just mention that the fuzzy set cross entropy17 is used between the

representations of the original data X and the low dimensional illustration.

Remarks.

• The first hyperparameter involved is k ∈ N for the number of nearest neighbors to be con-

sidered. This defines the local scale at which we obtain a roughly flat manifold. Basically,

individual information within the k nearest neighbor environment is lost as we will see

below, and smaller values for k provide more pronounced and smaller clusters.

• min dist is a second hyperparameter to be chosen. This hyperparameter determines how

close the points in Y are. This hyperparameter is comparable to %i given in (5.4), and it

will be illustrated in more detail in the example below.

5.2.2 Example, revisited

We revisit the car models example of Listing 1. In Listing 11 we provide the R code to perform

Listing 11: UMAP code in R using umap

1 library(umap)

2

3 umap.param <- umap.defaults

4 umap.param$n_components <- 2

5 umap.param$n_neighbors <- 15

6 umap.param$random_state <- 100

7

8 umap(X, config=umap.param , method =" naive")

the UMAP dimension reduction using the umap package of R. We choose a p = 2 dimensional

illustration, k = 15 nearest neighbors, and min dist = 0.1. This algorithm needs a seed and

correspondingly the solution will depend on the choice of this seed.

The results are presented in Figure 21. We observe rather nice clusters for k = 15 and

min dist = 0.1 which are very similar for the different seeds. Indeed, the clustering in the

UMAP method seems to depend much less on the initial seed than the one of t-SNE, compare

Figures 20 and 21.

In Figure 22 we analyze the sensitivities of the UMAP method in the two hyperparameters k

for the number of nearest neighbors, and min dist for the separation between the points in the

projection Y. The first row in Figure 22 is based on min dist = 0.1 and the second row on

min dist = 0.5. We observe that the bigger this value to more uniformly the points are spread

in Rp because they become more repulsive with increasing min dist. The second observation

17The cross entropy of two fuzzy sets (A,µ) and (A, ν) is given by
∑
a∈A µ(a) log

(
µ(a)
ν(a)

)
+(1−µ(a)) log

(
1−µ(a)
1−ν(a)

)
,

which is closely related to the corresponding KL divergences.

41

 Electronic copy available at: https://ssrn.com/abstract=3439358

●

●●

●

●

●

●

●●
●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●●
●●

●●

●●

●

●

●

●

●

●
●

●●

●●
●●

●●

●

●●

●
●

●●

●●

●
●

●
●

●
●

●

●
●

● ●

●

● ●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●
●●●●●●

●

●●

●●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●●

●

●

●
●

●
●

●

●
●●●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●
●●●

●

●

●

●

●

●

●●

● ●

●
●

●

●
●
●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●●
●

●

●

●
●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●●

●●●

●●●
●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
● ●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●●●●
●●●
●

●

●●

−5 0 5

−
6

−
4

−
2

0
2

4
6

UMAP (k=15) with seed 100)

component 2

co
m

po
ne

nt
 1

●

●●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●
●●

●●

●●

●●

●
●

●
●

●
● ●

●

● ●
●

●

●

●

●

●●

●

●●●

●
●

●

●

●

●

●●

●

●

●
●

●

●
●●●●●●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●●

●

●

●

●

●●

●

●

●●

●●●

●●●

●

●
●

●

●

●
●

● ●●

●

●
●

●
●

●

●

●
●

●

●●

●

●●●●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●
● ●

●

● ●
●

●

●

●

●

●

●

●
●●●●●●

●

●●

●●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●●
●

●●

●

●

●

●

tau>=21
17<=tau<21
tau<17 (sports car)

●

●●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●●
●

●

●
●

●

●

●
●

●

●

●

●●

●●

●●

●

●

●

●
●

●●

●●

●●

●

●

●

●

●

●●

●●

●●

●●

●●

●

●●

●
●

●●

●●

●

●

●●

●●

●

●●

●● ●
●
● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●●

●

●

●

●
●

●
●

●●●
●
●
●●

●●
●●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●
●

●

●

●●

●

●
●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●●

●

●

●●

●
●●

●

●

●
●

●

●

●

●
●

●● ●●
●

●●●

●

●

●

●●

●● ●

●

●

●

●●

●

● ●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●●

●
●

●

●

●

●
● ●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●● ●●●

●●●

●●

●

●
●●

●

●

●

●

●

●

●●

●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●
●

●
●

●

●

●

●●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●●

●

●●●

●●●●
●●●

●

●

●
●

−5 0 5

−
6

−
4

−
2

0
2

4
6

UMAP (k=15) with seed 123)

component 2

co
m

po
ne

nt
 1

●

●
●●

●

●

●●

●

● ●●

● ●

●
●

●●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●●
●

●

●
●

●

●

●
●

●●

●●

●●

●

●

●

●

●●

●●

●●

●●

●

●

●●

●

●● ●
●
● ●

●

●

●

●

●●

●

●●
●

●
●

●

●

●

●

●●

●

●

●
●

●
●

●●●
●
●
●●

●●
●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●
●

●

●

●

●

●
●

●

●

●● ●●●

●●●

●

●
●

●

●

●●

●
●

●

●

●●

●●

●

●

●●

●

●●

●

●●●●●

●

● ●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●
●

●●●●

●● ●
●
● ●

●

●

●

●

●

●
●

●●●
●
●
●●

●●
●●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●
●●●

●●

●

●

●

●

tau>=21
17<=tau<21
tau<17 (sports car)

●

●●

●

●

●

●

●●

●
●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

● ●

●
●

●

●● ●
●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●●
●

●

●
●●

●●

●●

●●

●

●

●

●

●

●●

●●

●●

●●

●●

●

●●

●●

●●

●●

●

●

●●

●●

●

●●

●
●

●
●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●●

●●

●

●

●

●

●●

●

●

●

●
●

●

●
●●
●●●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●
●

●

●

●

●

●
●

●

●

●●●

●

● ●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●●

●
●

●●

●

●●●

●

●

● ●

● ●

●

●

●
●

●●

●

●
●

●
●

●

●

●●

●●

●

●

●

●
●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●
●

●

●

●

●
●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●
●●

●
●●

●

●
●

●

●

●

●

●

●

● ●

●

●

● ● ●●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●●●

●●●

●●

●

●
●● ● ●

●

●

●

●

●●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●●●

●●●●●●●●●

●
●

−5 0 5

−
4

−
2

0
2

4

UMAP (k=15) with seed 195)

component 2

co
m

po
ne

nt
 1

●

●●●

●

●

●
●

●

●
●●

● ●

●
● ●●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●●

●●

●●

●●

●

●

●●

●

●
●

●
●
●

●

●

●

●

●

●●

●

●
●●

●●

●

●

●

●

●●

●

●

●
●

●

●
●●
●●●●

●

●
●

●
●

●

●
●

●●●

●

●

●

●

●

●
●

●

● ●

●●
●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●
●●

●

●

●

●

●● ●

●

●●

●●●

●●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●●●●
●

●

● ●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●
●

●
●
●

●

●

●

●

●

●

●

●
●●
●●●●

●

●
●

●
●

●

●

●
●●●

●

●●

●
●●

●

●

●

●
●

●

●●

●

●

●

●

tau>=21
17<=tau<21
tau<17 (sports car)

Figure 21: UMAP illustration of the data X using three different seeds with k = 15 nearest

neighbors and min dist = 0.1.

●

●●
●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●
●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●●

●

●

●●

●

●●

●

●

●●

●

●

●●●

●

●

●●

●●

●

●● ●

●

●

●

●

●

●

●
●

●

●

●●

●●

●●

●

●

●

●●

●●

●●

●●

●

●

●

●

● ●●

●●

●●

●●

●●

● ●●

●●

●●

●● ●

●

●●

●
●

●

●●

●
●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●●

●

●

●
●

●●

●

●

●

●
●

●

●

●●●●●●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●●

●
●
●

●

●
●●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●●

●

●

●●

●●● ●

●

●
●

●

●

●

●●

●●

●●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●●

●

●

●

●●

●
●

●

●

●●●
●

●

●●●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●●

●●
●

●●●

●●

●

●
●
●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

● ●● ● ●

●

●

●●

●

●
● ●

●

●

●●

●●

●

●

●●

●

●●
●

●

●

●

●

●

●●

●

●●●

●●●●●●●
●
●

●●

−10 −5 0 5 10

−
5

0
5

UMAP (k=10 NN and min_dist=0.1)

component 2

co
m

po
ne

nt
 1

●

●●●

●

●
●●

●

● ●●

●

●

●●
●●

●●

●

●

●●●

●

●

●●

●●

●

●● ●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●●●

●●

●●

●● ●

●

●●

●

●
●

●
●●

●

●

●

●

●

●●

● ●●●

●●

●

●

●
●

●●

●

●

●
●

●

●

●●●●●●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●●

●

●●

●

●

●

●

●●

●

●

●●

●●
●

●●●

●

●●

●

●

●
●

●

●

●

●

●●

●●

●

●

●●

●

●●

●

●●●●●

●

●

●

●

●●

●

●

●

●●

●●

●

● ●

●

●

●

●

●

●

●

●●●●

●
●

●
●●

●

●

●

●

●

●

●

●

●●●●●●

●

●●

●
●

●

●

●

●●
●

●

●

●
●
●●

●

●

●

●●●

●●

●

●

●

●

tau>=21
17<=tau<21
tau<17 (sports car)

●

●●

●

●

●

●

●●
●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●●
●●

●●

●●

●

●

●

●

●

●
●

●●

●●
●●

●●

●

●●

●
●

●●

●●

●
●

●
●

●
●

●

●
●

● ●

●

● ●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●
●●●●●●

●

●●

●●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●●

●

●

●
●

●
●

●

●
●●●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●
●●●

●

●

●

●

●

●

●●

● ●

●
●

●

●
●
●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●●
●

●

●

●
●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●●

●●●

●●●
●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
● ●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●●●●
●●●
●

●

●●

−5 0 5

−
6

−
4

−
2

0
2

4
6

UMAP (k=15 NN and min_dist=0.1)

component 2

co
m

po
ne

nt
 1

●

●●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●
●●

●●

●●

●●

●
●

●
●

●
● ●

●

● ●
●

●

●

●

●

●●

●

●●●

●
●

●

●

●

●

●●

●

●

●
●

●

●
●●●●●●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●●

●

●

●

●

●●

●

●

●●

●●●

●●●

●

●
●

●

●

●
●

● ●●

●

●
●

●
●

●

●

●
●

●

●●

●

●●●●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●
● ●

●

● ●
●

●

●

●

●

●

●

●
●●●●●●

●

●●

●●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●●
●

●●

●

●

●

●

tau>=21
17<=tau<21
tau<17 (sports car)

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

● ●

●●

●

●

●

●

●

●

●

●
●

●●

●●

●●

●

●

●

●
●

●
●

●
●

●

●

●●

●

●

●

●

●

●
● ●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●●

●

●

●

●
●

●
●

●
●●

● ●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●
●

●

●●

●●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
● ●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●
●●●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●●

●
●●●

● ●

●

●
●●

●

●

●

●

●

●

●
●

● ●

●

●●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●●

●

●●
●

●

●

●

●

●

●●

●

●
●●

●
●

●
●

●●
●
●●

●

●

−4 −2 0 2 4

−
3

−
2

−
1

0
1

2
3

UMAP (k=50 NN and min_dist=0.1)

component 2

co
m

po
ne

nt
 1

●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●
● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●●

●●

●●

●
●

●

●

●●

●

●
● ●

●
● ●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●●

●

●

●
●

●
●

●
●●

● ●●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●
●

●

●
●

●

● ●

●

●

●
● ●●

●
●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●●

●

●
●●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●
● ●

●
● ●

●

●

●

●

● ●
●

●
●●

● ●●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

tau>=21
17<=tau<21
tau<17 (sports car)

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●
●

●●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●●

●

●

●

● ●

●
●

●
●

●●

●

●

●

●

●

●
●

●
●

●

● ●
●

●
●

●

●
●

●●

●●

●

●

●

●

●●

●
●

●

● ●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
● ●

●
●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●
●●

●

●
●

●

●
●
●

●●

●
●

●●

●
●

−4 −2 0 2 4

−
3

−
2

−
1

0
1

2
3

UMAP (k=100 NN and min_dist=0.1)

component 2

co
m

po
ne

nt
 1

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

● ●

●

●

●

●

● ●

●

●

●
●

●
●●

●

●

●

●●●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●●
●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

● ●
●

●
●

●

●

●

●

●

● ●

●
●

●

●

●
●●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

● ●

●

●

●

●
●
●

●
●

●

●

●

●

tau>=21
17<=tau<21
tau<17 (sports car)

●

●●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●●

●

●

●

●

●

●● ●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●●

●
●

●
●

●●

●

●

●

●

●

●
●

●●

●●

●●

●
●

●

●
●

●●

●
●

●●
●

●

●
●

●

●
●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●●

●

●

●

●

●●

●

●

●

●

● ●

●

●
●

●●●

●
● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●●●

●

●

●
●

● ● ●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●
●●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●
●●
●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●●

●

●

●

●
● ●

●

●

●

●

●

●
●

●
● ●

●

●

●
●

●

●

● ●

●

●

●●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●●
●

●●●

● ●●
●

●
●●

●

●

●●

−10 −5 0 5 10

−
5

0
5

UMAP (k=10 NN and min_dist=0.5)

component 2

co
m

po
ne

nt
 1

●

●

●●
●

●

●

●

●

●

●●

●

●

●●

●

●

●● ●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●
●●

●

●

● ●●

●●

●
●●●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●
●●

●●

●

●

●

●

●●

●

●

●

● ●

●

●
●

●●●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●
●

●

●

●●

●
●

●
●●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●
●

●

●●

●

●●●●●

●

●

●

●

●● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●●●

●
● ●

●

●

●

●

●

●

●●●

●

●
●

●

●●

●

●

●

●●●

●●

●

●

●

●

tau>=21
17<=tau<21
tau<17 (sports car)

●

●●

●

●

●

●

●●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

● ●

●●

●

●

●

●
●

●●
●●

●●

●

●

●

●

●

●
●

●

●

●●
●

●

●●

●

●
●

●
●

●
●

●●

●
●

●●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

● ●

●

●

●

●

●
●

●

● ●
●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

● ●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●● ●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●
●●●

●
●

●

●

●

●
●

−5 0 5

−
6

−
4

−
2

0
2

4
6

UMAP (k=15 NN and min_dist=0.5)

component 2

co
m

po
ne

nt
 1

●

●●

●

●

●

●
●

●

●

●●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●●●

●

●

●

●●
●

●

●●

●●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

● ●

●

●

●

●
●

●

● ●
●

●

●
●

●
●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●
●

●●

●

●

●

●

●
●

●

●

●●

●●
●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●●●
●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

tau>=21
17<=tau<21
tau<17 (sports car)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●●

●●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

● ●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●
●

●
●

●
●● ●

●

●

●

●
●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●
●

●

●

●

●

−6 −4 −2 0 2 4 6

−
4

−
2

0
2

UMAP (k=50 NN and min_dist=0.5)

component 2

co
m

po
ne

nt
 1

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

tau>=21
17<=tau<21
tau<17 (sports car)

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
● ●

●

●

●
●

●

●●

●

●

●
●

−6 −4 −2 0 2 4 6

−
4

−
2

0
2

4

UMAP (k=100 NN and min_dist=0.5)

component 2

co
m

po
ne

nt
 1

●

●●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

● ●

●●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●
●

●

●●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

tau>=21
17<=tau<21
tau<17 (sports car)

Figure 22: UMAP illustration of the data X using k = 10, 15, 50, 100 nearest neighbors: on the

first row we set min dist = 0.1 and on the second row we set min dist = 0.5.

is that the clustering becomes more pronounced with smaller values k for the nearest neighbors

considered. Smaller values of k provide detailed manifold structures (noisier structure), and

for bigger k’s we receive the “big picture” because detailed information within the chosen k

neighbors is being lost. This is exactly what we observe in Figure 22 from the left-hand to the

right-hand side. The colors of the points in the pictures show that both t-SNE and UMAP result

in a similar topological picture describing the inner geometry of the considered cases.

5.3 Self-organizing map and Kohonen map

Self-organizing maps (SOM) is another dimension reduction technique that allows us to illustrate

high dimensional cases in low dimensional spaces preserving part of the original topology. The

42

 Electronic copy available at: https://ssrn.com/abstract=3439358

method goes back to Kohonen [19, 20, 21], and for this reason it is also called Kohonen map.

5.3.1 Methodology

We describe the Kohonen map. For this description we choose an explicit two dimensional

example. We choose the unit cube [0, 1]2 ⊂ Rp, p = 2, for a two dimensional illustration of

high dimensional data X . In this unit cube we choose J2 uniformly distributed neurons labeled

by j = (j1, j2) ∈ J = {1, . . . , J} × {1, . . . , J}. See Figure 23 as an example for a choice

(hyperparameter) of J = 10. The natural topology given to this neuron space is induced by the

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

neurons JxJ for a Kohonen map (J=10)

Figure 23: Uniformly distributed neurons j ∈ J in [0, 1]2 with J = 10.

squared Euclidean distance in R2, that is, the distance between neurons j ∈ J and j′ ∈ J is

given by ‖j − j′‖22/J2 (we use the scaling 1/J2 because the neurons live on the unit cube).

Each of these neurons j is established with a so-called codebook wj ∈ Rq, living in the same

space as the cases xi. These codebooks are getting trained such that each neuron represents a

set of similar cases xi. In this sense, we obtain a clustering to J2 neurons of the n cases, and

this clustering is done such that as much as possible of the original topology is preserved. We

use a metric d(·, ·) on Rq to measure dissimilarities between codebooks and original features.

Kohonen Map Algorithm.

(0) Choose initial codebooks w
(0)
j ∈ Rq for j ∈ J .

(1) Repeat for t = 1, . . . , tmax: run sequentially through all i ∈ {1, . . . , n} and perform for

each i the following steps

(a) select the best matching neuron (BMN)

j∗ = j∗(i) = arg min
j∈J

d(wj ,xi);

(b) update all codebooks w
(t−1)
j , j ∈ J , by setting

w
(t)
j = w

(t−1)
j + θ(j∗(i), j; t) α(t)

(
xi −w(t−1)

j

)
. (5.5)

Remarks.

43

 Electronic copy available at: https://ssrn.com/abstract=3439358

• The codebooks can be initialized at random. There are also initializations that are based

on PCA, which typically lead to faster convergence.

• In step (1) we select each case xi. This selection can be completely at random (sampling

without replacements) or we can run sequentially through all cases. Using each case once

is called an epoch.

• The BMN selects the neuron whose current codebook is most similar to the selected case

xi. All codebooks are then updated w.r.t. the BMN j∗(i). This is hidden in the choice of

the temporal scaling θ, more explicitly, we choose kernel

θ(j∗(i), j; t) = exp

{
− 1

2σ(t)2
‖j − j∗(i)‖22 /J

2

}
, (5.6)

where σ(t) is non-increasing in t ≥ 0. In this choice of the kernel θ we see the main

difference to clustering methods like K-means. In K-means we choose K cluster centers

which do not have any topological relationship, i.e. these clusters are considered like un-

ordered categorical. In SOM the neurons build a graph having a topological structure (in

our case a Euclidean one), and we use this topology to learn across neighboring neurons.

Neurons close to the BMN j∗(i) undergo a bigger change in (5.5) in the sense that they

have a bigger temporal scaling θ, and distant neurons are only marginally influenced by

this update.

• There remains the choices of the temporal functions α(t) and σ(t). α(t) acts as a learning

rate and a typical choice is

α(t) = α0
tmax − t
tmax

≥ 0, for all t ≤ tmax.

The bandwidth σ(t) is often chosen as

σ(t) = σ0
1.2tmax − t

tmax
> 0, for all t ≤ tmax.

• In the Kohonen map algorithm one typically distinguishes two different learning phases:

– Ordering phase. This phase tries to get the network into the right topological shape

on a global scale. Depending on the choice of the bandwidth σ(t), this phase takes

roughly 1000 iterations.

– Convergence phase. This phase adjusts the map locally. This second phase can be

specified less precisely, and may be more expensive computationally.

• After each iteration we can calculate the total dissimilarity between the Kohonen code-

books and the original features. Therefore, we define the total dissimilarity at algorithmic

time t by

dtotal(t) =

n∑
i=1

d
(
w

(t)
j∗(i),xi

)
,

that is, we compare xi to the codebook w
(t)
j∗(i) at time t of the BMN j∗(i). If this objective

function is decreasing the codebook becomes more similar to the original data. However,

note that the Kohonen map algorithm does not necessarily need to be decreasing in this

total dissimilarity function.

44

 Electronic copy available at: https://ssrn.com/abstract=3439358

• Depending on the chosen data X , different metrics d(·, ·) on Rq may be appropriate. The

standard choice is the Euclidean distance or the squared Euclidean distance. These two

choices give the same BMNs, but the decrease of the total dissimilarity will differ.

5.3.2 Illustrative examples

We provide two illustrative examples in this section to get an intuition about the functioning of

the Kohonen map. These examples are taken from Chapter 3 of Kohonen [20] and the semester

thesis of Dandrea [4]; we use exactly the same set-up and the same parameter values as in the

semester thesis of Dandrea [4].

Illustrative Example 1. The first illustrative example is special in the sense that we choose

the same dimension for the features xi ∈ Rq and for the neurons j ∈ J ⊂ Rp, we select q = p = 2.

Therefore, the first example does not provide a dimension reduction, but we would like to see

whether the codebooks wj ∈ Rq are able to rediscover the topology of the original data xi ∈ Rq.
Moreover, we choose a two dimensional example, because this allows us to illustrate both features

xi ∈ R2 and codebooks wj ∈ R2. This is helpful in understanding the Kohonen map. Note

that the following figures therefore always illustrate the data and approximations in the original

space R2. Of course, in general, this is not possible because features (and codebooks) live in a

high dimensional space.

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
● ●

●
●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

initial (random) codebooks w_j

axis 1

ax
is

 2

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●
●●●●

●●●●●●●●●●●●●●●●●●●●●
●●

●●
●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●
●
●
●●

●●
●●●●●

●●●●●●●●●●●●●●●●●●●●
●●

●
●
●
●
●●

●●●●

●●●●●●●●●●●●●●●●●●●
●●

●
●
●
●●

●
●●

●●●

●●●●●●●●●●●●●●●●●●●●
●
●
●
●
●●

●●●●
●●

●●●●●●●●●●●●●●●●●●●
●●

●
●
●●

●●
●●

●●●

●●●●●●●●●●●●●●●●●●
●●

●●
●
●●

●
●
●●

●●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

codebooks w_j: ordering phase, epoch 10

epoch= 10

●●●●●●●●●
●
●
●
●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●
●
●

●●●●●●●●
●
●
●
●
●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●
●
●

●●●●●●●●
●
●
●
●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●
●

●●●●●●●●
●
●
●
●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●
●

●●●●●●●●
●
●
●
●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●
●

●●●●●●●●
●
●
●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●
●
●

●●●●●●●●
●
●
●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●
●
●

●●●●●●●●
●
●
●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●
●
●

●●●●●●●●
●
●
●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●
●
●

●●●●●●●
●
●
●
●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●
●
●

●●●●●●●
●
●
●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●
●
●
●

●●●●●●●
●
●
●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●
●
●●

●●●●●●●
●
●
●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●
●
●●

●●●●●●●
●
●
●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●
●
●
●
●●

●●●●●●●
●
●
●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●
●
●
●●●

●●●●●●
●
●
●
●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●
●
●
●●●

●●●●●●
●
●
●
●
●
●
●

●
●

●
●

●
●

●
●

●
●

●
●
●
●
●
●●●●

●●●●●●
●
●
●
●
●
●
●

●
●

●
●

●
●

●
●

●
●
●
●
●
●
●
●●●●

●●●●●●
●
●
●
●
●
●
●
●

●
●

●
●

●
●

●
●
●
●
●
●
●
●
●●●●

●●●●●●
●
●
●
●
●
●
●
●

●
●

●
●

●
●

●
●
●
●
●
●
●
●●●●●

●●●●●●
●
●
●
●
●
●
●
●
●
●

●
●

●
●
●
●
●
●
●
●
●
●●●●●

●●●●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●

●●●●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●

●●●●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●

●●●●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●●

●●●●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●●

●●●●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●●

●●●●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●●

●●●●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●

●●●●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●

●●●●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●

●●●●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

codebooks w_j: ordering phase, epoch 100

epoch= 100

Figure 24: Case q = p = 2: (lhs) random initial configuration of codebooks w
(0)
j ∈ R2, j ∈ J ,

(middle, right) codebooks w
(t)
j ∈ R2, j ∈ J , after t = 10 and 100 epochs during the ordering

phase.

We start by selecting the original features xi ∈ X ⊂ R2. The original features xi are chosen

i.i.d. uniformly distributed on the unit cube [0, 1]2. Thus, the original features do not show any

clustering but are uniformly spread across the unit cube. As metric d(·, ·) for the dissimilarities

on the original space we choose the squared Euclidean distance function.

For the Kohonen map we choose J2 = 322 uniformly distributed neurons on the unit cube

[0, 1]2, this corresponds to Figure 23 with J = 10 replaced by J = 32. In total this provides

us with J2 = 1′024 neurons. Each of these neurons j ∈ J is initialized with an i.i.d. codebook

w
(0)
j being uniformly distributed on the unit cube. These 1’024 randomly initialized codebooks

w
(0)
j ∈ [0, 1]2 are illustrated in Figure 24 (lhs).

We divide step (1) of the Kohonen map algorithm into the ordering phase and the convergence

phase. For these two phases we choose different hyperparameters. For the ordering phase we

45

 Electronic copy available at: https://ssrn.com/abstract=3439358

select

tmax = 100, σ0 = 0.5 and α0 = 0.8,

and for each algorithmic step t = 1, . . . , tmax we only consider one case xi ∈ [0, 1]2. Under this

assumption we need to have n = tmax = 100 i.i.d. cases xi for the ordering phase.

Figure 24 (middle, rhs) shows the updated codebooks w
(t)
j at algorithmic times t = 10 and 100;

note that the black lines show the topology of the neurons in the neuron space J ⊂ R2. We

observe that the randomly initialized codebooks are quickly ordered within the first 10 steps,

and then this ordering is spread more widely in a uniform way in the remaining steps. This

reflects that the underlying (original) data xi are uniformly spread across the unit cube.

●●
●
●
●
●
●
●
●
●●●

●
●
●

●

●
●

●
●●●

●
●

●
●

●

●

●

●

●
●

●●
●
●

●
●
●
●
●
●●●

●
●
●
●

●
●

●
●●●

●
●

●
●

●

●

●

●
●
●

●●
●

●

●
●
●
●
●
●●●

●
●
●
●

●
●
●
●

●
●

●
●

●
●

●

●

●

●
●
●

●●
●

●

●
●
●
●
●
●●●

●
●
●
●
●
●
●
●

●
●

●
●

●
●

●

●

●

●
●
●

●●
●
●

●
●
●
●
●
●
●

●
●

●
●
●
●
●
●
●

●
●

●
●

●
●

●
●
●
●
●
●

●●
●
●
●
●
●
●
●
●
●
●

●
●

●
●
●
●
●
●

●
●

●
●

●
●

●
●
●
●
●
●

●●
●
●
●
●
●
●
●
●
●
●

●
●

●
●

●
●
●

●
●

●
●

●
●

●
●
●
●
●
●
●

●●
●
●
●
●
●
●
●
●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●
●
●
●

●●●
●
●
●
●
●
●
●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●
●
●
●

●●●●●●
●
●
●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●
●
●

●●●●●●●
●
●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●
●
●

●●●●●●●
●
●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●
●●

●●●●●●
●
●
●
●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●
●
●●

●●●●●●
●
●
●
●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●
●
●●

●●●●
●
●
●
●
●
●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●
●
●●

●●●
●
●
●
●
●
●
●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●
●
●●

●●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●

●
●

●
●

●
●
●
●
●
●
●
●●●

●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●

●
●
●
●
●
●
●
●●●●

●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●

●
●
●
●
●
●
●
●●●●

●●
●

●

●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●

●
●
●
●
●
●
●
●●●●

●●
●

●

●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●
●
●
●
●
●
●
●
●●●●

●●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●

●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●

●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●

●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●

●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●

●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●
●●

●●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●
●
●●

●●
●

●

●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●

●

●
●
●

●●
●

●

●

●
●
●
●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●

●
●

●
●

●

●
●
●

●●
●

●

●

●
●
●
●
●
●

●
●

●
●
●
●
●
●
●
●
●
●

●
●

●
●

●

●

●
●
●

●●
●

●

●

●

●
●
●
●
●

●
●

●
●
●
●
●
●
●
●
●
●

●
●

●
●

●

●

●
●
●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

codebooks w_j: convergence phase, epoch 100

epoch= 100

●
●
●
●
●
●
●

●

●
●

●
●

●

●

●

●

●
●

●
●
●

●
●

●

●

●

●

●

●

●
●
●

●
●
●
●
●
●
●

●

●
●

●
●

●
●

●

●

●
●

●
●
●

●
●

●

●

●

●

●

●

●
●
●

●
●
●
●
●
●
●

●

●
●

●
●

●
●

●

●

●
●
●
●
●

●
●

●

●

●

●

●

●

●
●

●

●
●
●
●
●
●
●

●

●
●

●
●

●
●

●

●

●
●
●
●
●

●
●

●

●

●

●

●

●

●

●
●

●
●
●
●
●
●

●

●

●
●

●
●
●
●

●

●

●
●
●
●
●

●
●

●

●

●

●

●

●

●

●
●

●
●
●
●

●

●

●

●
●

●
●

●
●
●
●

●
●
●
●
●

●
●

●
●

●

●

●

●

●

●

●
●

●
●
●
●

●

●

●
●

●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●

●

●

●

●

●

●

●
●

●●
●
●

●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●
●
●
●

●

●

●
●
●

●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●
●
●
●

●

●

●
●
●

●●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●
●

●
●

●
●

●
●
●
●
●

●

●

●
●
●

●●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●

●
●

●
●

●
●
●
●
●

●

●

●

●

●
●

●●
●
●
●
●
●
●●●
●
●
●

●
●

●
●

●
●

●
●

●
●
●
●
●

●

●

●

●

●
●

●●
●
●
●
●
●
●●
●
●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●

●

●

●

●

●
●

●●
●
●

●
●
●
●
●
●
●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●

●

●

●

●

●
●

●●
●

●

●

●
●
●
●
●
●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●

●

●

●

●
●
●

●
●
●

●

●

●

●
●
●
●
●
●

●
●

●
●
●
●

●
●

●
●

●
●
●

●

●

●

●

●
●
●

●
●
●

●

●

●

●
●
●
●
●
●

●
●

●
●
●
●

●
●

●
●
●
●
●

●

●

●

●

●
●
●

●
●
●

●

●

●

●

●
●
●
●
●
●

●
●
●
●

●
●

●
●

●
●
●
●
●

●

●

●

●

●
●

●
●
●

●

●

●

●

●
●
●
●
●
●
●
●
●
●

●
●

●
●
●
●
●
●
●
●

●

●

●
●
●

●
●
●

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●

●
●

●
●
●
●
●
●

●
●
●

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●
●
●
●
●●

●
●
●

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●

●
●
●
●
●
●
●

●
●
●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●

●
●

●
●

●
●

●
●
●
●
●
●
●

●
●
●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●

●
●

●
●

●

●

●
●
●
●
●
●
●

●
●
●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●

●
●

●
●

●
●

●

●

●
●
●
●
●
●

●
●
●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●

●
●

●
●

●
●

●

●

●

●

●

●
●
●

●
●
●

●

●

●

●

●

●

●

●
●
●
●
●
●
●

●
●

●
●

●
●

●

●

●

●

●

●

●
●
●

●
●
●

●

●

●

●

●
●

●

●

●
●
●
●
●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●
●

●
●
●
●
●

●
●●●●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●
●

●
●
●
●
●

●●●●●●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●
●

●
●
●
●
●

●●●●●●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●
●

●
●
●
●
●

●●●●●●
●

●

●

●

●

●

●

●
●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

codebooks w_j: convergence phase, epoch 1000

epoch= 1000

●
●
●
●
●

●

●

●

●

●

●
●
●
●

●

●

●

●
●
●
●
●

●

●

●

●

●

●

●

●
●
●

●
●
●
●
●

●

●

●

●

●

●
●
●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●
●
●

●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●
●
●

●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●

●

●

●

●

●

●

●

●

●
●
●

●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●

●

●

●

●

●

●

●

●

●

●
●
●

●
●
●
●
●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●

●

●

●

●

●

●
●

●

●
●
●
●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●

●

●

●

●

●

●
●
●

●
●
●
●

●
●
●
●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●

●

●

●

●

●

●
●
●
●
●
●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●

●

●

●

●

●

●
●
●
●
●
●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●
●

●

●

●

●

●

●
●
●
●
●
●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●
●
●
●
●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●
●
●
●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●

●
●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●

●

●

●
●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●

●

●

●
●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●
●
●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●
●
●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●
●
●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●

●

●

●

●
●
●

●
●
●
●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●
●
●

●
●
●
●
●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●
●
●
●
●

●

●

●

●

●
●
●

●
●
●
●
●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●
●
●
●
●
●

●

●

●

●

●
●
●

●
●
●
●
●

●

●

●

●

●
●
●
●
●

●

●

●

●

●

●
●
●
●
●
●

●

●

●

●

●
●
●

●
●
●
●
●

●

●

●

●

●
●
●
●
●

●

●

●

●

●

●

●
●
●
●
●
●

●

●

●

●
●
●

●
●
●
●
●

●

●

●

●

●
●
●
●
●
●

●

●

●

●

●

●
●
●
●
●
●

●

●

●

●
●
●

●
●
●
●
●

●

●

●

●

●

●
●
●
●
●

●

●

●

●

●

●
●
●
●
●
●

●

●

●

●
●
●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

codebooks w_j: convergence phase, epoch 10000

epoch= 10000

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

codebooks w_j: convergence phase, epoch 100000

epoch= 100000

Figure 25: Case q = p = 2: codebooks w
(t)
j ∈ R2, j ∈ J , after t = 100, 1′000, 10′000, 100′000

epochs during the convergence phase.

The next phase is the convergence phase. We use the resulting codebooks of the ordering phase

as initial codebooks for the convergence phase. The choice of the hyperparameters for the

convergence phase is as follows

tmax = 100′000, σ0 = 0.005 and α0 = 0.1,

and for each algorithmic step t we only consider one case xi ∈ [0, 1]2. Under this assumption we

need to have n = tmax = 100′000 i.i.d. cases xi for the convergence phase.

Figure 25 shows the codebooks w
(t)
j during the convergence phase for algorithmic times t =

100, 1′000, 10′000, 100′000, the black lines again illustrate the topology in the neuron space J ⊂
R2. We observe that the codebooks converge to a uniform grid on the unit cube [0, 1]2. Of

course, this makes perfect sense because this uniform grid reflects the topology obtained by

uniformly distributed i.i.d. samples xi on that unit cube. We conclude that the Kohonen map

is able to rediscover the right topology in our example, where the dimensions q of the feature

space and p of the neuron space are identical.

Illustrative Example 2. In the second illustrative example we consider a real dimension

reduction problem. The features xi ∈ Rq live in a q = 2 dimensional space, and the neurons are

assumed to live in a one dimensional space, i.e. j ∈ J = {1, . . . , J} ⊂ Rp with p = 1. Again,

for q = 2 we can illustrate original features and codebooks which is useful in analyzing the

functioning of the Kohonen map.

The original features xi ∈ X ⊂ R2 are again chosen to be i.i.d. uniformly distributed on the unit

cube [0, 1]2. As metric d(·, ·) for the dissimilarities on the original space we choose the squared

Euclidean distance function.

46

 Electronic copy available at: https://ssrn.com/abstract=3439358

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

initial (random) codebooks w_j

axis 1

ax
is

 2
●

●
●● ●●

●

●

●●
●●

●
●

●

●●
●●

●
●●●●

●●
●
●●

●

● ●● ●

●●
● ●

●●● ●●
●●●
●●

●●
●

●
●
●

●
●●
●●
●
●
●

●●●
●
●
●●●
●●
●

●●●
●
●
●●

●●
●
●

●
●●

●

●

●
●●

●●
●●●

●● ●●
●

●●●

●
●

●●
●

●
●

●
● ●●

●
●

●
●

●●
●●●

●
●
●

●●
● ●

●●●●●

●●
●
●

●●
●

●
●
●

●●●

●
●●●

●
●
●●● ●
●●

●●
●●
● ●

●
●

●●●
●●● ●

●
●●

●

●●

●
●●●●

●
●●

●

● ●
●

●●
●●
●

●
●●

●
● ●●

●●

●
●

●●●
●

●

●●
●

●
●

●

●

●

●

●

●●●●●●
●

●●●●

●●●

●

●●●● ●●

●●
●

●

●●●
●

●●
● ●

●
●

●
● ●●

●●
●

●
●

●
●●

●
●

●●
● ●●●●

●

●

●
●
●●

●

●●

●●
●●● ●
●

●

●

●●
●●

●

●●

●

●

●● ●

●

●

●●

●
●

●
●

●
●●

●● ●
●●●
●

●
●●●

●
●●●

●
●●●●

●●

●
●

●●
●

●
● ●●

●

● ●

●
●●

●
● ●

● ●
●●

●
●

●

●●
●
●
●●●

●●

●

●

●
●●

●

●●

●●●●●
●

●●●●
●

●●
●

●
●

●●●●●●●● ●● ●
● ●
●

●
●●

●

●●

●

●
●●

●
●
●

●

●
●

●●
●

●

●
●

●●●

●●
●●

●

●
●●

●●●●● ●●

●●
●

●
●

●●●
●

●

●
●

●
●
●
●
●

●

●
●

●

●●
●●

●●

● ●

●
●

●

●

●
●●
●

●

●

●●
●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

codebooks w_j: ordering phase, epoch 10

epoch= 10

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●

●●●●●●●●●
●●●●●●●●

●●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●●

●●●●●●●
●●●●●●●

●●●●●●●●
●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

codebooks w_j: ordering phase, epoch 100

epoch= 100

Figure 26: Case q = 2 and p = 1: (lhs) random initial configuration of codebooks w
(0)
j ∈ R2,

j ∈ J , (middle, right) codebooks w
(t)
j ∈ R2, j ∈ J , after t = 10 and 100 epochs during the

ordering phase.

For the one dimensional Kohonen map we choose J = 500 uniformly distributed neurons in

the unit interval [0, 1], i.e. this just provides equidistant points on the unit interval. Each of

these neurons j ∈ J = {1, . . . , J} is initialized with an i.i.d. codebook w
(0)
j being uniformly

distributed on the unit cube. These 500 randomly initialized codebooks w
(0)
j ∈ [0, 1]2 are

illustrated in Figure 26 (lhs).

Again, we divide step (1) of the Kohonen map algorithm into the ordering phase and the

convergence phase. For these two phases we choose different hyperparameters. For the ordering

phase we select

tmax = 100, σ0 = 0.1 and α0 = 0.5,

and for each algorithmic step t we only consider one case xi ∈ [0, 1]2. Under this assumption we

need to have n = tmax = 100 i.i.d. cases xi for the ordering phase.

Figure 26 (middle, rhs) shows the updated codebooks w
(t)
j at algorithmic times t = 10 and 100;

the black lines show the topology of the neurons in the one dimensional neuron space J ⊂ R. We

observe that the randomly initialized codebooks are quickly ordered within the first 100 steps,

trying to reflect a uniform distribution on the unit cube [0, 1]2 by a one dimensional object

(approximation).

●● ● ● ● ● ●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●
●●
●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●

●

●

●●●

●

●
●
●●●●●●
●●●●●●●●

●●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●
●●●●●
●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●

●●●●●●
●●●●●
●●●●●
●●●●●
●●●●●●

●●●●●
●●●●●
●●●●●
●●●

●●●●●●●●●
●●●●●●
●●●●●●
●●●●●●●●●

●●●
●

●

●

●

●
●

●

●

●
●●●●●●●●●●●

●●●●●
●

●●●
●

●
●●●●●●

●●●●●●●●●●
●
●
●
●●●

●
●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●
●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●

●

●
●
●

●

●
●●●●●●●●●●●●●●●●

●

●

●

●
●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

codebooks w_j: convergence phase, epoch 100

epoch= 100

● ● ●
●

●

●

●

●

●
●

●●●
●

●

●

●
●●●

●●
●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●
●●

●
●●●●

●●●●●●●●●●●●●●
●●●●●●●●●

●

●

●

●

●
●●

●

●

●

●

●
●

●
● ●●●●●●●●

●●●●●●●●
●●●●●●●●

●●●●●●
●●●●●●●
●●●● ●

● ●●●●●●●●●●●●●●●●
●

●

●

●
● ●

●

●
●

●●●●●●●
●●●●●●

●●●●●
●●●●●
●●●●●
●●●●●●●●●●
●●●●●
●●●●●

●●●●●●●● ●●●●
●●●●●●

●●●●●
●●●●●●●●●●●●●

●●●●●●
●●●●●●
●●●●●●●

●
●

●
●

●

●

●

●

●

●
● ●

●
●

●

●

●

●
●
●●●●●●●

●

●

●

●

●●●

●

●

●
●

●●●
●●●●●●●●

●
●

●

●

●

●
●

● ●

●

●

●

●
●●●●●●●●●●●

●●●●●●●●●
●

●
●●●
●

●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●

●

●

●
● ●

●

●

●

●
●●●●●●●●●●●●

●
●

●

●

●

●

●

●
●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

codebooks w_j: convergence phase, epoch 1000

epoch= 1000

● ● ● ●
●

●

●

●

●●●●●●
●

●
●

●

●
●

●
●●●●●

●
●

●
●

●
●

●●●●●
●●●●
●●●
●●●●●●●●●●●●●●●

●●●●●
●

●●●●
●
●
●●
●●●●●●●●
●●●● ● ● ● ● ●●

●
●

●
●●●●●●●

●●●●●●●●●
●

●
●

●
●
●

●

●
●

●●●●●●
●

●

●

●

●
●● ●

●
● ● ●

●
●

●●● ● ● ●●●●
●●●●●●●●●●●●●

●●●●●
●●●●●●●● ● ●

●
●●

●●
●

●
●●●●●●●●●

●

●

●

●

●

●

●
●●

●
●

●
●

● ● ● ● ● ● ●●●●●●●●
●●●●●
●●●●
●●●●●●●●●●●●●●●
●●●●●

●●●●
●●●●●●●●●

●
●

●●●●●●●●●●●
●

●
●●● ● ● ●

●
●●●●●●●●●●

●●●
●

●
●

●
●

●
●●●

●
●●●

●

●

●

●

●
● ● ● ● ● ● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●
● ● ● ● ● ● ● ●●

●

●

●
●

●
●

●

●
●
●●●●

●●●
●
●
●
●
●

●
● ●●●

●
●

●
●

●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●
●
●
●
●●●

●
●
●
●
●●●
●●●
●●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●
●
●

● ● ● ●
●

●
●
●

●

●

●

●

●

●●●
●

●●
●

●

●

●

●

●
●

●
● ●

●
●
●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

codebooks w_j: convergence phase, epoch 10000

epoch= 10000

●
●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●●●●●●●●●●●
●
●

●
●

●
●
●

●●
●

●●
●
●

●
●
●●●●●●●

●●
●
●
●
●
●
●

●
●
●

●●●●●
●
●
●
●
●

●
●

●
●

● ● ● ● ● ● ●
●

●

●
● ●

●

●

●

●
●

●
●●●●●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●●●●●●●●●

●

●
●

●

●

●
● ●

●
●

●

●
● ●

●

●

●

●
● ● ● ● ● ● ●

●
●

●●●●●
●

●●●●●●●●●● ● ● ● ●
●
●●●●●●●

●
●

●
●

●●●●●●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●
● ● ● ● ● ● ● ● ● ●●●●●●

●●●●●●●●
●

●
●● ● ● ●●

●● ●●●
●

●●● ●
●

●
●

●
● ● ●

●
●

●
●

●
●

●●●●●●●●
●

●
●

●
●
●

●
● ●

●

●
●

●
● ● ● ● ●

●
●

●
●

●
●

●

●

●
●

●●
●

●

●

●
●●

●

●

●

●

●
● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ● ● ● ● ● ● ● ● ●
●

●
●

●●●
●
●

●

●

●

●

●

●
●

●
●

●
●

●
●

● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●●

●
●
●
●●●
●●●

●●●
●
●
●
●

●
●

●
●

●
●

●

● ●
●

●

●
●

●
●

●
●●

●●
●

●
●

● ● ● ●
●

●
● ●

●

●

●
●

●

●

●

●
●

●
●

●
● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●●

●

●

●
● ●

●
●

●
●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

codebooks w_j: convergence phase, epoch 100000

epoch= 100000

Figure 27: Case q = 2 and p = 1: codebooks w
(t)
j ∈ R2, j ∈ J , after t =

100, 1′000, 10′000, 100′000 epochs during the convergence phase.

The next phase is the convergence phase. We use the resulting codebooks of the ordering phase

as initial codebooks for the convergence phase. The choice of the hyperparameters for the

47

 Electronic copy available at: https://ssrn.com/abstract=3439358

convergence phase are as follows

tmax = 100′000, σ0 = 0.00001 and α0 = 0.1,

and for each algorithmic step t we only consider one case xi ∈ [0, 1]2. Under this assumption we

need to have n = tmax = 100′000 i.i.d. cases xi for the convergence phase.

Figure 27 shows the codebooks w
(t)
j during the convergence phase for algorithmic times t =

100, 1′000, 10′000, 100′000, the black lines again illustrate the topology in the one dimensional

neuron space J ⊂ R. We observe that the codebooks converge to a line in the unit cube [0, 1]2

that tries to cover the entire unit cube in a uniform way (Peano curve). This reflects that

the lower dimensional object tries to capture as much of the topology induced by the uniform

distribution on the unit cube. This way we can capture some neighboring relationships, but of

course not all of them, because the dimension is reduced from q = 2 down to p = 1.

5.3.3 Example, revisited

We revisit the car models example of Listing 1. In Listing 12 we provide the R code to perform

Listing 12: SOM code in R using the kohonen library

1 library(kohonen)

2

3 set.seed (100)

4 som.X <- som(as.matrix(X), grid = somgrid(xdim=10, ydim=10, topo=" rectangular "),

5 rlen= 100, dist.fcts=" sumofsquares ")

6

7 summary(som.X)

8 predict(som.X)$unit.classif # allocation to neurons

9 plot(som.X,c(" changes ")) # training progress

10 plot(som.X,c(" counts ")) # number of allocated neurons

the Kohonen map algorithm using the kohonen library of R. We choose J = 10, J = {1, . . . , J}×
{1, . . . , J} ⊂ R2 and the squared Euclidean distance in Rq. This algorithm needs a seed and

correspondingly the solution will depend on the choice of this seed.

0 20 40 60 80 100

0.
01

0
0.

01
5

0.
02

0
0.

02
5

0.
03

0

training progress

Iteration

M
ea

n
di

st
an

ce
 to

 c
lo

se
st

 u
ni

t

allocation counts to neurons

2

4

6

8

10

12

14

allocation of cases to neurons

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●
●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●●
●●

●

●●

●

●

●

●

●
●

●
●●

●

●

●

●

●●

●
●

●
●

●
●

●

●

●

● ●

●

●

●
●●

●●
●

●●

●

●

●

●
●

●●●●
●

●

●
●

●●

●

●●

●●

●

●
●

●

●

●

●●

●

●

●●

●

● ●

●

●
●
●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●●●● ●●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●●

●●
●

●

●●●

●

●

●

●

●

●

●● ●● ●

●

●

●
●

● ●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●●
●

●

●●

●

●

●
●

●
●● ●

●● ●

●

●

●
● ●

●

●
●

●

●

●

●

●
●

●

●
●●●

●
●●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●
●

●

● ●●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●●

●
●
●

●
●

●

●
●●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●
●

●

●
●

●

●
●
●

●

●

●

●
●
●●

●

●

●●

Figure 28: SOM illustration of the data X : (lhs) decrease of loss over training iterations, (middle)

number of cases allocated to each neuron, (rhs) cases allocation to neurons.

48

 Electronic copy available at: https://ssrn.com/abstract=3439358

The resulting Kohonen map is illustrated in Figure 28. The left-hand side shows the mean dis-

tance between the cases xi and the BMN’s codebooks w
(t)
j∗(i) over the different training iterations

t ≥ 1 (epochs). In general, this function is not monotone because the Kohonen map algorithm

does not provide a monotonically decreasing optimization algorithm, but it should be decreasing

in average over a rolling time window, otherwise the codebooks of the neurons do not learn the

topology of the feature space.

The middle picture of Figure 28 shows the number of cases allocated to each neuron. We note

that not each neuron receives at least one case. This suggests to also study other neuron spaces

J ⊂ R2. The right-hand side of Figure 28 illustrates these cases with red color for sports cars

τ < 17, green color for cars with τ ∈ [17, 21) and blue color for the cars with τ ≥ 21.

allocation of cases to neurons

●

●
●

●● ●

●

●● ●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●
●

●●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●● ●

●

●

●

●

●

●

●●

●

●
●

●●

●
●

●

●●

●

●

●

●

●
●●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●●

●●

●
●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ●

●
●

●●

●

●

●

●●●
●

●●●

●

●●

●●

●

●●

●
●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●●●●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●●●
●●

●
●

●
●

●

●

●

●

●

●

● ●

●●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●●
●●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●●

●●

●● ● ●

●

●

●
●

●

●

●
●

●
●

●●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●●

●●

●

●

●

●

●●

●

●
●

●
●

●

●●

●

●
●

●
●

●

●

●

●

●

●
●●

●
●

●●

●

●

●

●●

●
●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

● ●

●

●

●

●

●●
●

●
●

●

●
●

●

●

●

●●●

● ●●

●●●
●

●●
●
●

●

●●

allocation of cases to neurons

● ●

●

●●

●

●

● ●

●

●
●

●
●

●
● ●

●

●

●
●

●●
●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

●

●●●

●

●

●

●

●

●
●

●●

●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●●
● ●

●

●

●

●

●

●●
● ●●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

● ●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●●

●

● ●

●

●

●

● ●

●

●●

●

●

●

●

●●
●

●

●

●●●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

● ●
●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

● ●

●

●

●●
●

●

●

allocation of cases to neurons

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ●

●
●

●
●

●

●●
●

●

●

●

●●

●

●

●
●●

●●

●

●

●

●●

●

●

●

● ●

●

●

●

●
●

●

●
●●

●

●●

● ●●

●

●
●

●

●●

●●

●

●

●

●

●

●●

●

●

●
●

●
●

●
●

●

●
●●

●

●●

●
●

●

●

●●

●
●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●●

●

●

●●

●

●●●

●●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●
●●●● ●
●● ●

●

●
●●

●

●
●

●
●

●
●

●
●

●

●

●●
●

●
●

●
●

●
●

●
●

●

●
●

●

● ●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●●

●

● ●

●

●

●

●●

●
●

●●

●
●

●

●

●●●●

●

●

●

●

●

●

●
●

●
● ●

●●

●●●

●
●

●

●●

●

● ●

●

●

●
●

●

●

● ●●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●
● ●

●
●

●
●●

●

●

●

●

●

●

●

●

●
●

● ●●
●

● ●

●
●

●

●

●

●

●
●

●
●

●
●

●
●●●

●

●●

●

●

●●

●●

●
●

●●

●
●

●●
●
●

●

●

●
●

●
●

●

●
●●●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

● ●
● ●

●
●

●

●

●●
●●

●
●

●

●
● ●

●
●●

●

●
●●
●

●

●

●

●

●

●●

●

●

●●
●

●
●
●

●

●
●

●●

Figure 29: SOM to neurons for different neuron spaces J : (lhs) J = {1, . . . , 5} × {1, . . . , 10},
(middle) J = {1, . . . , 5} × {1, . . . , 5}, and (rhs) J = {1, . . . , 2} × {1, . . . , 10}.

In Figure 29 we illustrate the Kohonen maps for different neuron spaces (lhs) J = {1, . . . , 5} ×
{1, . . . , 10}, (middle) J = {1, . . . , 5} × {1, . . . , 5}, and (rhs) J = {1, . . . , 2} × {1, . . . , 10}. If

we consider the last Kohonen map (right-hand side of Figure 29), we are tempted to define the

sports cars to be those cars whose BMNs are in the upper two rows of that map. Most of the

dots that are allocated to these neurons have a red color, which implies (bottom line) that the

judgment of the Kohonen map is quite similar to the Belgium expert choice. On the other hand,

the example also shows that there are quite some similarities between the different neurons, for

this reason one should explore the individual neurons in more detail before making conclusions.

6 Categorical variables

The mindful reader will have noticed that we have avoided any discussion about categorical

variables, so far. All feature components chosen above are continuous (or at least ordered), and

therefore they are well-suited for Euclidean distances, Manhattan distances, Gaussian kernels,

etc. The treatment of nominal categorical variables is more difficult, i.e. how can we measure

distances, for instance, between car brands, models or colors? In this section we present and

discuss possible approaches for the treatment of categorical variables, but we refrain from giving

explicit examples.

49

 Electronic copy available at: https://ssrn.com/abstract=3439358

6.1 Univariate categorical variables

Assume that x is a nominal categorical feature with labels in L.18 We denote by L = |L| the

number of different labels. The most natural dissimilarity measure between categorical labels

x, x′ ∈ L is to check whether they are different, i.e.

d(x, x′) = 1{x 6=x′}. (6.1)

This distance measure reflects that each label x ∈ L is mapped to its own unit vector in RL.

Thus, we consider the corners S◦L of the (L−1)-unit simplex SL, see (4.8). These corners describe

one-hot encoding of categorical variables and each label x ∈ L has the same distance from any

other label x′ 6= x ∈ L.

Eskin et al. [6] proposed to cushion dissimilarity by accounting for a weight factor of 1/L2 for

mismatches

d(x, x′) =
1

L2
1{x 6=x′}. (6.2)

Of course, this weight factor is only of relevance if we have multiple categorical features having

different numbers L of labels.

Another possible differentiation is done be weighting the dissimilarity measure (6.1) with the

number of occurrences of the labels in the data. Basically, we move from the corners S◦L of the

(L − 1)-unit simplex SL closer to the origin. Assume that label x ∈ L occurs nx times in the

data set of size n. We define the categorical probability in the (L− 1)-unit simplex

p = (px)x∈L =
(nx
n

)
x∈L

∈ SL.

This then allows us to define the probability weighted dissimilarity

d(x, x′) = pxpx′1{x 6=x′}. (6.3)

If all labels are equally likely, i.e. px ≡ 1/L, we have (6.2), and otherwise a mismatch x 6= x′ is

more heavily punished for more likely labels x, x′ ∈ L.

6.2 Multiple categorical variables

For multiple categorical variables we can benefit from the structure of contingency tables to

construct dissimilarity measures. Let us consider the special case of two categorical feature

components here, having L1 and L2 labels, respectively. This allows us to consider an L1 × L2

contingency table with entries

px =
nx
n
∈ [0, 1] for x = (x1, x2) ∈ L = L1 × L2,

where L1 and L2 denote the labels of the first and second categorical feature component, re-

spectively, and nx denotes the number of occurrences of x ∈ L among the n data points. The

row marginals and the column marginals are defined by

px1 =
∑
z2∈L2

p(x1,z2) and px2 =
∑
z1∈L1

p(z1,x2),

18We call nominal categorical feature values x ∈ L either labels or levels.

50

 Electronic copy available at: https://ssrn.com/abstract=3439358

for x1 ∈ L1 and x2 ∈ L2, respectively. Thus, we have row and column normalizations

1 =
∑
z2∈L2

p(x1,z2)

px1
=
∑
z1∈L1

p(z1,x2)

px2
.

This allows us to consider the conditional probabilities, given x1 and x2, respectively,

pz2|x1 =
p(x1,z2)

px1
for z2 ∈ L2,

pz1|x2 =
p(z1,x2)

px2
for z1 ∈ L1.

6.2.1 χ2-test

A special role among all probability distributions (px)x∈L is played by the one which allocates

the labels x1 ∈ L1 and x2 ∈ L2 independently from each other. For given marginals (px1)x1∈L1
and (px2)x2∈L2 this special distribution is given by

πx = px1px2 for x = (x1, x2) ∈ L.

Obviously, (πx)x∈L has marginals (px1)x1∈L1 and (px2)x2∈L2 , and the conditional probability of

observing one label does not depend on the other label under (πx)x∈L.

The χ2-test is a statistical test that allows us to verify whether given observations (nx)x∈L may

have been generated by a distribution having independence between the components in x. We

define the test statistics

χ2 =
∑
x∈L

(px − πx)2

πx
.

The test statistics χ2 measures the amount of independence in (px)x∈L. This test statistics has

its roots in the binomial modeling of x = (x1, x2), and is based on the central limit theorem

px − πx√
πx(1− πx)

(d)
=⇒ N (0, 1), (6.4)

as nx → ∞, and under the null hypothesis that (px)x∈L comes from independent marginals.

The square of the right hand side can further be modified to

(px − πx)2

πx(1− πx)
=

(px − πx)2

πx
+

(px − πx)2

1− πx

=
(px − πx)2

πx
+

((1− px)− (1− πx))2

1− πx
, (6.5)

which is approximately χ2-distributed under the null hypothesis. Summing up over all x and

omitting the second term in (6.5) (of the complementary probabilities), we get the χ2-test of

independence. For more details we refer to [1] and [25].

6.2.2 Euclidean distance

The χ2-test of independence provides us with the natural idea to compare the probability px to

its independent counterpart πx. To do so, we may simply choose the Euclidean distance (as in

the χ2-test), but any other distance function or even divergence will also do, see pages 375-379

51

 Electronic copy available at: https://ssrn.com/abstract=3439358

in Mardia et al. [23] for particular examples of other distance functions. We define the Euclidean

distance measure between x1, x
′
1 ∈ L1 by

d(x1, x
′
1) =

√√√√∑
z2∈L2

(
p(x1,z2)

px1
−
p(x′1,z2)

px′1

)2

=

√∑
z2∈L2

(
pz2|x1 − pz2|x′1

)2
, (6.6)

and similarly for x2, x
′
2 ∈ L2

d(x2, x
′
2) =

√√√√∑
z1∈L1

(
p(z1,x2)

px2
−
p(z1,x′2)

px′2

)2

=

√∑
z1∈L1

(
pz1|x2 − pz1|x′2

)2
.

If the distance d(x1, x
′
1) = 0 in (6.6), then we have that the conditional probability vectors of

the second component satisfy, given x1 and x′1, respectively,(
pz2|x1

)
z2∈L2

=
(
pz2|x′1

)
z2∈L2

,

i.e. the distribution of the second label z2 ∈ L2 does not depend on the fact whether we have

observed x1 or x′1 in the first label.

If d(x1, x
′
1) = 0 for all x1, x

′
1 ∈ L1, this implies that px = px1px2 = πx for all x ∈ L. This brings

us back to the χ2-test, namely, that if the distances between all x1, x
′
1 ∈ L1 are zero we are

in the case of independence from marginals. This also says that if we want to discriminate a

component x1 ∈ L1 as described above, we need to have a contingency table that does not stem

from independent marginals, otherwise x1 does not have explanatory power for x2, and x2 ∈ L2
is not helpful in discriminating x1 ∈ L1.

Acknowledgment. We would like to kindly thank Jürg Schelldorfer (Swiss Re) for his detailed

comments that have helped us to substantially improve this tutorial, and, in particular, for his

Figure 1.

References

[1] Benhamou, E., Melot, V. (2018). Seven proofs of the Pearson Chi-squared independence test and

its graphical interpretation. arXiv:1808.09171

[2] Burt, C. (1950). The factorial analysis of qualitative data. British Journal of Mathematical and

Statistical Psychology 3, 166-185.

[3] Croux, C., Filzmoser,P., Oliveira, M. (2007). Algorithms for projection pursuit robust principal

component analysis. Chemometrics and Intelligent Laboratory Systems 87, 218-225.

[4] Dandrea, D. (2018). Self-organizing maps applied to car insurance. Semester Thesis, ETH Zurich,

Spring term 2018.

[5] Efron, B., Hastie, T. (2016). Computer Age Statistical Inference. Cambridge University Press.

[6] Eskin, E., Arnold, A., Prerau, M., Portnoy, L., Stolfo, S. (2002). A geometric framework for

unsupervised anomaly detection. In: Applications of Data Mining in Computer Security, Barbara,

D., Jajodia, S. (eds.), Kluwer Academic Publisher, 78-100.

52

 Electronic copy available at: https://ssrn.com/abstract=3439358

[7] Ferrario, A., Noll, A., Wüthrich, M.V. (2018). Insights from inside neural networks. SSRN

Manuscript ID 3226852. Version November 14, 2018.

[8] Fisher, J. (2004). Visualizing the connection among convex hull, Voronoi diagram and Delaunay

triangulation. In: 37th Midwest Instruction and Computing Symposium, SemanticScholar.

[9] Fraley, C., Raftery, A.E. (2003). MCLUST: Software for model-based clustering, density estimation

and discriminant analysis. Technical Report No. 415, University of Washington.

[10] Golub, G., Van Loan, C. (1983). Matrix Computations. John Hopkins University Press.

[11] Hastie, T., Tibshirani, R., Friedman, J. (2009). The Elements of Statistical Learning. Data Mining,

Inference, and Prediction. 2nd edition. Springer Series in Statistics.

[12] Hinton, G.E., Salakhutdinov, R.R. (2006). Reducing the dimensionality of data with neural net-

works. Science 313, 504-507.

[13] Hothorn, T., Everitt, B.S. (2014). A Handbook of Statistical Analyses using R. 3rd edition. CRC

Press.

[14] Ingenbleek, J.-F., Lemaire, J. (1988). What is a sports car? ASTIN Bulletin 18/2, 175-187.

[15] James, G., Witten, D., Hastie, T., Tibshirani, R. (2015). An Introduction to Statistical Learning.

With Applications in R. Corrected 6th printing. Springer Texts in Statistics.

[16] Kaufman, L., Rousseeuw, P.J. (1987). Clustering by means of medoids. In: Statistical Data Analysis

Based on the L1 Norm and Related Methods, Y. Dodge (ed.), North-Holland, 405-416.

[17] Kaufman, L., Rousseeuw, P.J. (1990). Finding Groups in Data: An Introduction to Cluster Analysis.

John Wiley & Sons.

[18] Kingma, D.P., Welling, M. (2014). Auto-encoding variational Bayes. arXiv:1312.6114v10.

[19] Kohonen, T. (1982). Self-organized formation of topologically correct feature maps. Biological Cy-

bernetics 43, 59-69.

[20] Kohonen, T. (2001). Self-Organizing Maps. 3rd edition. Springer.

[21] Kohonen, T. (2013). Essentials of the self-organizing map. Neural Networks 37, 52-65.

[22] Kramer, M.A. (1991). Nonlinear principal component analysis using autoassociative neural net-

works. AIChE Journal 37/2, 233-243.

[23] Mardia, K.V., Kent, J.T., Bibby, J.M. (1979). Multivariate Analysis. Academic Press.

[24] McInnes, L., Healy, J., Melville, J. (2018). UMAP: uniform manifold approximation and projection

for dimension reduction. arXiv:1802.03426v2.

[25] Prillaman, J. (1956). The Derivation of the Chi-Square Test of Goodness of Fit, McGill University,

Master of Science.

[26] Richman, R. (2018). AI in actuarial science. SSRN Manuscript ID 3218082, Version August 20,

2018.

[27] Schelldorfer, J., Wüthrich, M.V. (2019). Nesting classical actuarial models into neural networks.

SSRN Manuscript ID 3320525.

[28] Schubert, E., Rousseeuw, P.J. (2019). Faster k-medoids clustering: improving the PAM, CLARA,

and CLARANS algorithms. arXiv:1810.05691v3.

[29] Stahel, W. (2011). Applied Multivariate Statistics. ETH Zurich, Lecture Notes.

https://stat.ethz.ch/∼stahel/courses/multivariate/script/

53

 Electronic copy available at: https://ssrn.com/abstract=3439358

[30] van der Maaten, L.J.P., Hinton, G.E. (2008). Visualizing data using t-SNE. Journal of Machine

Learning Research 9, 2579-2605.

[31] Vathy-Fogarassy, A., Abonyi, J. (2013). Graph-Based Clustering and Data Visualization Algo-

rithms. Springer.

[32] Wüthrich, M.V., Buser, C. (2016). Data analytics for non-life insurance pricing. SSRN Manuscript

ID 2870308. Version June 5, 2019.

54

 Electronic copy available at: https://ssrn.com/abstract=3439358

