€Y Routledge

Mlreth Arviorie 3 5]
WOrin Amencan g Taylor & Francis Group

Actuanal joumnal . .
North American Actuarial Journal

ISSN: 1092-0277 (Print) 2325-0453 (Online) Journal homepage: https://www.tandfonline.com/loi/uaaj20

Simulation of Compound Hierarchical Models in R

Vincent Goulet PhD & Louis-Philippe Pouliot

To cite this article: Vincent Goulet PhD & Louis-Philippe Pouliot (2008) Simulation of
Compound Hierarchical Models in R, North American Actuarial Journal, 12:4, 401-412, DOI:
10.1080/10920277.2008.10597532

To link to this article: https://doi.org/10.1080/10920277.2008.10597532

ﬁ Published online: 28 Dec 2012.

N
[:J/ Submit your article to this journal &

||I| Article views: 98

A
h View related articles &'

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalinformation?journalCode=uaaj20

https://www.tandfonline.com/action/journalInformation?journalCode=uaaj20
https://www.tandfonline.com/loi/uaaj20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/10920277.2008.10597532
https://doi.org/10.1080/10920277.2008.10597532
https://www.tandfonline.com/action/authorSubmission?journalCode=uaaj20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=uaaj20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/10920277.2008.10597532
https://www.tandfonline.com/doi/mlt/10.1080/10920277.2008.10597532

SIMULATION OF COMPOUND HIERARCHICAL
MODELS IN R

Vincent Goulet* and Louis-Philippe Pouliot?

ABSTRACT

Hierarchical probability models are widely used in insurance applications for data classified in a
tree-like structure and in Bayesian inference. We propose an R function to simulate data from
compound models in which both the frequency component and the severity component can
have a hierarchical structure. The model description method is based solely on R expressions, and
it allows for models with any number of levels and nodes per level, as well as with very general
conditional probability structures. The function is part of the R package actuar.

1. INTRODUCTION

Hierarchical probability models are widely used for data classified in a tree-like structure and in Bay-
esian inference. The main characteristic of such models is to have the probability law at some level in
the classification structure be conditional on the outcome in previous levels. For example, adopting a
bottom-to-top description of the model, a simple hierarchical model could be written as

XJA, ® ~ Poisson(A),
A|® ~ Gamma(3, 0),
® ~ Gamma(2, 2), 1.1)

where X, represents actual data.

In the broader graph theory sense, a hierarchical model is a model that can be represented by a
directed acyclic graph (DAG). One special type of DAG is the tree: a graph in which any two nodes are
connected by exactly one path. With this terminology, tree models are a subset of hierarchical models.
However, in most practical actuarial applications and in the literature the two terms are understood
as equivalent. Unless otherwise stated, we will use both without distinction.

Hierarchical models arise naturally in insurance applications. For example, they may be used to
describe the probability structure of a portfolio of policies or as a means to incorporate collateral data
from other cohorts, lines of business, or even companies in predictions (see Jewell 2004, 1975). In the
actuarial literature the random variables ® and A, above, are generally seen as uncertainty or risk
parameters; in the sequel we refer to them more generally as mixing parameters.

This paper focuses on simulation of data for hierarchical models using the R statistical system (R
Development Core Team 2008). R is a free software version of the award-winning S system; its com-
mercial counterpart is S-PLUS by Insightful Corporation. R is not just another statistical environment,
but a full-fledged and self-contained programming language with a strong mathematical orientation.

*Vincent Goulet, PhD, Associate Professor, Ecole d’actuariat, Université Laval. Pavillon Alexandre-Vachon 1045, avenue de la Médecine, Local
1620, Québec (QC) G1V 0A6, Canada. vincent.goulet@act.ulaval.ca.

T Louis-Philippe Pouliot, Actuarial Analyst, Industrielle Alliance, Assurance et services financiers 1080, Grande-Allée Ouest Case Postale 1907,
Succ. Terminus Québec (QC) G1K 7M3. louis-philippe.pouliot@inalco.com.

401

402 NORTH AMERICAN ACTUARIAL JOURNAL, VOLUME 12, NUMBER 4

It is based on the notion of vector that the many actuaries who have worked, or are still working, with
APL or SAS IML have come to know and love.

The example above is merely a multilevel mixture of models, something that is simple to simulate
“by hand” in R. By virtue of vectorization, the following expression will yield n variates of the random
variable X :

> rpois(n, rgamma(n, 3, rgamma(n, 2, 2))).

However, for tree-like categorical data common in actuarial applications there will usually be many
categories—or nodes—at each level. Simulation is then complicated by the need to always use the
correct parameters for each variate. In addition, actuaries often need to simulate separately the fre-
quency and the severity of claims for compound models of the form

S=0C, + -+ Cy (1.2)

where C,, C,, . . . are mutually independent and identically distributed random variables each inde-
pendent of N.

There exist various software solutions to simulate data from hierarchical models, the most prominent
being BUGS (Spiegelhalter, Thomas, and Best 2003); see also Scollnik (2001) for an excellent intro-
duction from an actuarial perspective. At the time of this writing, OpenBUGS (Thomas et al. 2006)
and JAGS (Plummer 2008a) appear to be the most current incarnations of the BUGS language. Both
have R interfaces (Thomas et al. 2006; Plummer 2008b). However, using BUGS through R is often
cumbersome (needing external files to save the description of the model), requires learning a new
language, and is overkill if one does not intend to run a full Markov Chain Monte Carlo (MCMC) or
Gibbs Sampler analysis.

We propose in this paper a method to describe very general tree models relying solely on R expres-
sions. The method is flexible enough to encompass models with most types of hierarchical interactions
of interest to actuaries and any number of nodes at each level.

We also demonstrate our implementation of the method in function simul of the R package actuar
(Dutang, Goulet, and Pigeon 2008). The function is specifically designed to simulate data from com-
pound models like (1.2) where both the frequency and the severity components can have a hierarchical
structure. The function also supports weights (or volumes) in the model. We believe that very few, if
any, other readily available software packages share these features.

Function simul should prove useful whenever random data for a portfolio of insurance contracts
are needed. For example, Forgues, Goulet, and Lu (2006) and Belhadj, Goulet, and Ouellet (2008)
relied on the function for their simulation studies in credibility theory. Function aggregateDist of
the actuar package also calls simul internally to approximate by simulation the aggragate claim
amount distribution in the classical collective risk model (Gerber 1979). Note, however, that the func-
tion was not designed for full-ledged MCMC analyses.

The paper is structured as follows: Section 2 introduces the model description method, and Section
3 describes the implementation in detail, with some usage examples.

2. DEescrRIPTION OF HIERARCHICAL MODELS
Our aim was to develop a method to describe hierarchical models in R that would meet the following
criteria:

1. Simple and intuitive to go from the mathematical formulation of the model to the R formulation
and back

2. Allows for any number of levels and nodes

3. At every level, allows for any use of parameters higher in the hierarchical structure.

Fulfillment of this last item results in support for very general tree models; see Example 3.

SIMULATION OF CoMmPOUND HIERARCHICAL MODELS IN R 403

A hierarchical model is completely specified by the number of nodes at each level and by the prob-
ability law at each level. One of the main difficulties is to express which of the previous parameters are
used in the probability model of a given level and how.

Our proposed method is as follows. First, the number of nodes is specified by means of a named list
in which each element is a vector of the number of nodes in each node of a given level. Indirectly, this
also provides the number of levels in the model. Vectors are recycled (repeated) when the number of
nodes is the same throughout a level.

Second, the probability model is expressed in a semisymbolic fashion using an object of mode “ex-
pression, ” a list-like object containing unevaluated R expressions. Each element of the object must
be named—with names matching those of the number of nodes list—and should be a complete call to
an existing random number generation function, but with the number of variates omitted. Hierarchical
models are achieved by replacing one or more parameters of a distribution at a given level by any
combination of the names of the levels above. If no mixing is to take place at a level, the model for
this level can be NULL. All random variables that do not depend on the outcome of other variables
should come first in the description. Their order is then unimportant.

ExAmPLE 1

Consider the following expanded version of model (1.1):

XAy, ©; ~ Poisson(A,), t=1,...,n
Aﬁ\@i ~ Gamma(3, 0)), j=1, s J;
0, ~ Gamma(2, 2), i=1,...,1,

with I = 3, J, = 4,J, =5, J; = 6, and n; = n = 10. Hence, the first level has three nodes, these

nodes are split, respectively, into four, five, and six nodes at the second level, and the last level (the

data) has 10 nodes in every branch of the tree. Two schematic representations of this model are

provided in Figure 1. Figure la uses the very convenient plate notation also employed with BUGS. In

this notation a rectangle is a metaphor for repetition. Figure 1b is a standard tree representation.
Following the rules explicited above, the number of nodes is specified by

> list(Theta = 3, Lambda = c(4, 5, 6), Data = 10),

Figure 1
Schematic Representations of the Model of Example 1

A,‘j|®,‘

i=1,..,1 X,‘jﬂ/\,‘j, 0,

(a) Plate notation (b) Equivalent tree representation

404 NORTH AMERICAN ACTUARIAL JOURNAL, VOLUME 12, NUMBER 4

and the probability model is expressed as

> expression(Theta = rgamma (2, 2),
+ Lambda = rgamma (3, Theta).
+ Data = rpois (Lambda))

L]

Storing the probability model requires an expression object to avoid evaluation of the incomplete
calls to the random number generation functions. A simulation function based on this model descrip-
tion method will build and execute the calls to the random generation functions from the top of the
hierarchical model to the bottom. At each level the function has to (1) infer the number of variates
to generate from the number of nodes list and (2) appropriately recycle the mixing parameters simu-
lated previously.

The actual names of the levels are immaterial; they serve only to identify the mixing parameters.
Furthermore, any random generation function can be used. The only constraint in our implementation
is that the name of the number of variates argument be n.

Function simul also supports usage of weights in models. These usually modify the frequency pa-
rameters to take into account the ‘“‘size’” of an entity. Weights are used in simulation wherever the
name weights appears in a model.

3. IMPLEMENTATION

We implemented the model description method of the previous section in function simul of actuar
(Dutang, Goulet, and Pigeon 2008), a package providing additional actuarial science functionality to
R. The software is distributed through the Comprehensive R Archive Network (CRAN; http://cran.r-
project.org).

Function simul can simulate data from compound models of the form

S:(jl+"'+CA\r,

where both the frequency and the severity components are hierarchical. The function has four main
arguments: (1) nodes for the number of nodes list, (2) model. freq for the frequency model, (3)
model . sev for the severity model, and (4) weights for the vector of weights in lexicographic order,
that is, all weights of entity 1, then all weights of entity 2, and so on. It is the user’s responsibility to
ensure that the length of weights matches the number of nodes when weights are to be used.

Notice that the function was not designed to take care of the simulation of the weights. In practice,
the actuary may have real exposures (number of claims, payroll, surface, etc.) at his disposal. Using
these to simulate claims data improves the realism of the resulting portfolio. Otherwise, weights are
simple to simulate by hand, as we shall see in the examples below.

Function simul first simulates and appropriately recycles the frequency mixing parameters at each
level and the frequencies per node at the lowest level. Then the same operation is repeated with the
severity model, except that the number of nodes at the lowest level is now given by the frequencies
just simulated, not by the entries in the nodes list. This requires one additional recycling of the mixing
parameters.

The most obvious type of storage for the simulated data is a k-way array, where k is the number of
levels in the model. However, array storage rapidly becomes inconvenient and inefficient when the
number of nodes at each level is different: the array ends up filled with missing values (NA) to patch
shorter dimensions.

Hence, in the long run it seems more appropriate to store the data in a two-dimensional object,
much like a database or a spreadsheet. In the present context, the rows of the object will contain the
“entities” of the classification structure, and the columns will contain the nodes of the last level, usually
the periods of observation. However, for the sake of generality, we wanted function simul to return

SIMULATION OF CoMmPOUND HIERARCHICAL MODELS IN R 405

the individual claim amounts C; for each entity. Thus, we opted to store the results in a list of class
“portfolio” with a dim attribute of length two. Since every element can be a vector, the object can
be seen as a three-dimensional array with a third dimension of potentially varying length. The function
also returns a matrix of integers giving the classification indexes of each entity in the portfolio.

The actuar package also defines four summary methods to easily access key quantities for each entity
of the simulated portfolio:

1. A method of aggregate to compute the aggregate claim amount S

2. A method of frequency to compute the number of claims N

3. A method of severity (a generic function introduced by the package) to return the individual
claim amounts C;

4. A method of weights to extract the weights matrix.

In addition, all methods have a classification and a prefix argument. When the first is FALSE,
the classification index columns are omitted from the result. The second argument overrides the default
column name prefix; see the simul.summaries help page in the package for details.

The following example illustrates these concepts in detail.

EXAMPLE 2

Consider an insurance portfolio where contracts are classified into ‘“cohorts” for rate-making purposes.
This is common practice in workers compensation or automobile insurance, for example, although
usually with more levels. Now, say we need to simulate claims data for this portfolio according to the
following probability model:

Sy =Cy +++C

1jtNije

fori=1,...,Lj=1,...,J,t=1,..., n with

ij)

N;|A;, ®; ~ Poisson(wA,) Cijn|®;, ¥; ~ Lognormal(0,, 1)
Aij|<I>i ~ Gamma(®P,, 1) @ij|‘lfi ~ NV, 1)
®, ~ Exponential (2) v, ~ N(2,0.1),

and the ws are known, fixed weights. Here the random variables ® and W represent incertainty due
to the cohort, whereas A and O represent incertainty due to the contract. Using as per convention to
number the data level 0, the above is a two-level compound hierarchical model.

Assuming that I = 2,J, = 4,J,=3,n;; =-++=mny, = 4 and n,; = n,, = n,; = 5 and that weights
are simply simulated from a uniform distribution on (0.5, 2.5), then simulation of a data set with
simul is achieved with

> nodes <- list(cohort = 2,

+ contract = c (4, 3),

+ year = c(4, 4, 4, 4, 5, 5, 5))
> mf <- expression(cohort = rexp(2),

+ contract = rgamma (cohort, 1),
+ yvear = rpois(weights * contract))
> ms <- expression(cohort = rnorm(2, sqrt(0.1)),
+ contract = rnorm(cohort, 1),
+ year = rlnorm(contract , 1))
> wijt <- runif(31, 0.5, 2.5)

> pf <- simul (nodes = nodes, model.freq = mf,

+ model.sev = ms, weights = wijt)

Object pf is a list of class “portfolio” containing, among other things, the aforementioned two-
dimensional list as element data and the classification matrix (subscripts i and j) as element
classification:

406 NORTH AMERICAN ACTUARIAL JOURNAL, VOLUME 12, NUMBER 4

> class (pf)

[1] “portfolio”

> pfSdata
yvear.l year.?2 year.3 vear.4 year.5

[1,] Numeric,2 Numeric,2 11.38 Numeric, 0 NA

[2,] Numeric,0 Numeric,0 Numeric,0 Numeric,(0 NA

[3,] Numeric,0 Numeric,3 Numeric,0 Numeric,2 NA

[4,] Numeric,0 98.13 50.62 55.7 NA

[5,] Numeric,0 11.79 2.253 2.397 Numeric, 2
[6,] Numeric,0 Numeric,0 Numeric,0 Numeric,0 Numeric,O
[7,] Numeric,3 Numeric,4 Numeric,2 Numeric,2 Numeric,O

> pfSclassification

cohort contract

(1,1 1 1
[2,1] 1 2
[3,1 1 3
[4,] 1 4
[5,] 2 1
[6,] 2 2
(7,1 2 3

The output of pf$data is not very readable. Printing the results of simul like this would bring
many users to wonder what Numeric, n means. It is actually R’s way to specify that a given element
in the list is a numeric vector of length n—the third dimension mentioned above. To ease reading, the
print method for objects of class “portfolio” prints only the simulation model and the number of
claims in each node:

> pf
Portfolio of claim amounts

Frequency model

cohort ~ rexp(2)

contract ~ rgamma (cohort, 1)

year ~ rpois(weights * contract)
Severity model

cohort ~ rnorm(2, sqgrt(0.1))
contract ~ rnorm(cohort, 1)

year ~ rlnorm(contract, 1)

Number of claims per node:

cohort contract year.l year.2 year.3 year.4 vyear.5
[1,1 1 1 2 2 1 0 NA
[2,1 1 2 0 0 0 0 NA
[3,1 1 3 0 3 0 2 NA
4,1 1 4 0 1 1 1 NA
[5,] 2 1 0 1 1 1 2
[6,1 2 2 0 0 0 0 0
[7,1 2 3 3 4 2 2 0

SIMULATION OF CoMmPOUND HIERARCHICAL MODELS IN R 407

Depending on the application, one may need either one or all of the aggregate claim amounts S,
the numbers of claims Ny, and the individual claim amounts Cy,. The extractor functions aggregate,
frequency, and severity allow easy access to these quantities.

By default, the method of aggregate returns the values of S;, in a regular matrix (subscripts i and

j in the rows, subscript t in the columns):

ijt

> aggregate (pf)

cohort contract year.l year.2 year.3 year.4 year.5

[1,] 1 1 31.37 7.521 11.383 0.000 NA
[2,] 1 2 0.00 0.000 0.000 O0.000 NA
[3,] 1 3 0.00 72.706 0.000 23.981 NA
[4,] 1 4 0.00 98.130 50.622 55.705 NA
[5,] 2 1 0.00 11.793 2.253 2.397 10.48
[6,] 2 2 0.00 0.000 0.000 0.000 0.00
[7,] 2 3 44.81 88.737 57.593 14.589 0.00

The method has a by argument to get statistics for other groupings and a FUN argument to get
statistics other than the sum. For example, one can quickly obtain the average claim amount per cohort
and per year with the following:

> aggregate(pf, by = c(“cohort”, “year”), FUN = mean)

cohort year.l year.2 year.3 year.4 year.b
[1,1 1 15.69 29.73 31.00 26.562 NA
[2,] 2 14.94 20.11 19.95 5.662 5.238

The method of frequency returns the values of N;.

i~ 1t is mostly a wrapper for the aggregate method
with the default sum statistic replaced by 1ength. Hence, arguments by and FUN remain available:

> frequency (pf)

cohort contract year.l year.2 year.3 year.4 year.5

[1,1 1 1 2 2 1 0 NA
(2,1 1 2 0 0 0 0 NA
[3,] 1 3 0 3 0 2 NA
[4,] 1 4 0 1 1 1 NA
[5,] 2 1 0 1 1 1 2
[6,] 2 2 0 0 0 0 0
[7,]1 2 3 3 4 2 2 0
> frequency (pf, by = “cohort”)

cohort freg
[1,1 1 13
[2,] 2 16

The method of severity returns the individual variates Cy,, in a matrix similar to those above, but
with a number of columns equal to the maximum number of observations per entity,

Tij

max 2 Ny,
i t=1

Thus, the original period of observation (subscript t) and the identifier of the severity within the period
(subscript u) are lost and each variate now constitute a “‘period” of observation:

408

NORTH AMERICAN ACTUARIAL JOURNAL, VOLUME 12, NUMBER 4

> severity(pf)

Smain
cohort contract claim.l claim.2 claim.3 claim.4 claim.5
[1,] 1 1 7.974 23.401 3.153 4.368 11.383
(2,1 1 2 NA NA NA NA NA
[3,1 1 3 3.817 41.979 26.910 4.903 19.078
(4,1 1 4 98.130 50.622 55.705 NA NA
[5,] 2 1 11.793 2.253 2.397 9.472 1.004
[6,] 2 2 NA NA NA NA NA
[7,] 2 3 14.322 11.522 18.966 33.108 15.532
claim.6 claim.7 claim.8 claim.9 claim.10 claim.11
[1,1 NA NA NA NA NA NA
[2,] NA NA NA NA NA NA
[3,] NA NA NA NA NA NA
[4,] NA NA NA NA NA NA
[5,] NA NA NA NA NA NA
[6,] NA NA NA NA NA NA
[7,] 14.99 25.11 40.15 17.44 4.426 10.16
Ssplit

One may need to extract separately the individual claim amounts of one or more periods. For this
purpose the severity method provides an argument splitcol. For example, to extract the claim
amounts of the first year:

> geverity(pf, splitcol

1)

Smain

cohort contract claim.l claim.2 claim.3 claim.4 claim.5

[1,] 1 1 3.153 4.368 11.383 NA NA
[2,] 1 2 NA NA NA NA NA
[3,] 1 3 3.817 41.979 26.910 4.903 19.078
(4,1 1 4 98.130 50.622 55.705 NA NA
[5,] 2 1 11.793 2.253 2.397 9.472 1.004
[6,] 2 2 NA NA NA NA NA
[7,] 2 3 33.108 15.532 14.990 25.107 40.150
claim.6 claim.7 claim.8
(1,1 NA NA NA
(2,1 NA NA NA
[3,] NA NA NA
[4,] NA NA NA
[5,] NA NA NA
[6,] NA NA NA
[7,] 17.44 4.426 10.16
Ssplit
cohort contract claim.l claim.2 claim.3
[1,1 1 1 7.974 23.40 NA
2,1 1 2 NA NA NA
[3,] 1 3 NA NA NA

SIMULATION OF CoMmPOUND HIERARCHICAL MODELS IN R

409

~

~ O U1 >

~

DN N

11.

NA
NA
NA
52

18

NA
NA
NA

.97

Finally, the weights matrix corresponding to the data in object pf is

> weights (pf)

cohort contract

N o Ul W DN

~

1

NSRRI

WN R A WNDR

Y
0
1
1.
1
0
0
1

ear.l year.2
.8361 2.115
.7042 1.709
6552 1.762
.5681 1.614
.7229 1.907
.5307 0.758
.6995 2.320

Combined with the argument classification

compute loss ratios S

> aggregate (pf,

it/ Wi

vear.l year.2

o O O O o

The following example shows that function simul supports more than multilevel models.

EXAMPLE 3

37.

0.
.00
.00
.00
.00
.37

53
00

3.
0.
41.
60.
6.
0.
38.

556
000
264
781
183
000
244

Y
1
1
1.
2
1
0
2

5100

.1594

.0595 0.95
.9738 2.08
.0114 1.25

ear.4 year.5
.1555
.0892

NA
NA
NA
NA
64
23
83

= FALSE, the above methods can be used to easily

yvear.3 year.4 year.b
8.
0.
0.
22.
0.
0.
35.

9638
0000
0000
6412
9818
0000
5328

0.

0.
15.
25.
.263
0.
7.

2

000
000
881
796

000
253

1

NA
NA
NA
NA
0.95
0.00
0.00

classif = FALSE)/weights (pf, classif

FALSE)

Scollnik (2001) considers the following model for the simulation of claims frequency data in a MCMC

context:
S.|A;, o, B ~ Poisson(zw,A,),
Aja, B ~ Gamma(a, B),
a ~ Gamma(s, 5),
B ~ Gamma(25, 1)
fori =1,2,3,t=1,...,5, and with weights w, simulated from

a; ~ U0, 100),
b, ~ U(0, 100).

w,|a;, b; ~ Gammal(q;, b;),

410

NORTH AMERICAN ACTUARIAL JOURNAL, VOLUME 12, NUMBER 4

For illustration purposes, we will take the simulation of weights as an integral part of the model.
Figure 2a shows the plate notation of the simulation model. To use simul, one simply has to find the
equivalent tree representation shown in Figure 2b. The call is then

> x <- simul (nodes = list(alpha = 1, beta = 1, Lambda = 3,
+ a =1, b=1, w= 5, year = 1),

+ model.freq = expression(alpha = rgamma (5, 5),
+ beta = rgamma (25, 1),

+ Lambda = rgamma (alpha, beta),

+ a = runif (0, 100),

+ b = runif(0, 100),

+ w = rgamma(a, b),

+ yvear = rpois(w * Lambda)))

A call to frequency yields the variates, in this case a 15 X 1 matrix. It may be more convenient for
further use to reorganize the data as follows:

> matrix(frequency (x, classification = FALSE),
+ nrow = 3, ncol = 5, byrow = TRUE)
(.11 [,21 [,31 [,4]1 [,5]
[1, 0 0 0 0 1
[2, 1 0 0 0 1
[3, 0 2 0 0 1

Of course, one can also easily simulate the weights in a separate step with a single R expression:

> wit <- rgamma (15, rep(runif(3, 0, 100), each = 5),
+ rep(runif(3, 0, 100), each = 5))

Feeding these weights to simul results in a simpler call and straightforward extraction of the variates:

> x <- gimul(list(a = 1, b = 1, Lambda = 3, year = 5),

+ expression(a = rgamma (5, 5),

+ b = rgamma (25, 1),

+ Lambda = rgamma (a, b),
Figure 2

Schematic Representations of the Model of Example 3

AW a

p
Aj afv\ /bi Ao B
1oL,
a;
Wif b
1
wiila;, b;
Sit t=1,..,5 S
i=1,2,3 SiiAj, a, B

(a) Plate notation (b) Equivalent tree representation

SIMULATION OF CoMmPOUND HIERARCHICAL MODELS IN R 411

+ yvear = rpois(weights * Lambda)),
+ weights = wit)

> frequency (x)

a b Lambda year.l year.2 year.3 year.4 year.b
(1,1 11 1 0 0 0 0 0
(2,1 11 2 0 0 0 0 0
[3,] 11 3 0 1 0 1 1

U

One will find more examples of simul usage in the simulation demo file of the actuar package.

Type
> demo (simulation, package = “actuar”)

at the R prompt to run the demo.

4. CONCLUSION

This paper introduced an R function to simulate data from compound hierarchical (tree) models. The
function is based on a model description method relying on two objects: a list giving the number of
nodes in each level of the model, and an expression object containing the probability model at each
level. The probability models are expressed in a semisymbolic fashion as calls to random number gen-
eration functions with the number of variates omitted. The function is quite flexible, allowing for any
kind of interaction between mixing parameters at every level of the hierarchy.

To make the function even more useful for actuarial applications, we would like to extend support
to a wider range of random effects models; crossed classication models (Dannenburg, Kaas, and Goo-
vaerts 1996) come to mind here. It is not clear if we may be able to go as far as the full range of
models supported by BUGS. This will need further investigation.

The actuar package is released under the GNU General Public License (www.fsf.org/licensing/
licenses/gpl.html). In a nutshell this means that anyone is free to use and modify our code, provided
that any published derivative work is also released under the GPL. Therefore, the model description
method or the simul function can be adapted to special needs or contexts other than insurance.

Finally, if R or actuar is used for actuarial analysis, the software should be cited in publications. Use

> citation()
and
> citation (“actuar”)

at the R command prompt for information on how to cite the software.

5. ACKNOWLEDGMENTS

This research benefited from financial support from the Natural Sciences and Engineering Research
Council of Canada and from the Chaire d’actuariat (Actuarial Science Chair) of Université Laval. The
authors also thank an anonymous referee and a co-editor for improvements to the paper.

412 NORTH AMERICAN ACTUARIAL JOURNAL, VOLUME 12, NUMBER 4

REFERENCES

BeLHADJ, H., V. GOULET, AND T. OUELLET. 2008. On parameter estimation in Hierarchical Credibility. ASTIN Bulletin, submitted.

DANNENBURG, D. R., R. Kaas, AND M. J. GOOVAERTS. 1996. Practical Actuarial Credibility Models. Leuven: Ceuterick.

Dutang, C., V. GOULET, AND M. PIGEON. 2008. actuar: An R package for Actuarial Science. Journal of Statistical Software 25(7).
www.jstatsoft.org/v25/i07.

FORGUES, A., V. GOULET, AND J. Lu. 2006. Credibility for Severity Revisited. North American Actuarial Journal 10(1): 49-62.

GERBER, H. U. 1979. An Introduction to Mathematical Risk Theory. Philadelphia: Huebner Foundation.

JEWELL, W. 1975. The Use of Collateral Data in Credibility Theory: A Hierarchical Model. Giornale dell’Istituto Italiano degli Attuari
38: 1-16.

. 2004. Bayesian Statistics. In J. L. Teugels and B. Sundt, (eds.), Encyclopedia of Actuarial Science, vol. 1, pp. 153-166. New
York: John Wiley.

PLUMMER, M. 2008a. JAGS Version 1.0.2 Manual. Lyon: International Agency for Research on Cancer. www-ice.iarc.fr/~martyn/

software/jags.

. 2008b. rjags: Bayesian Graphical Models Using MCMC. R package version 1.0.2-3. http://mcme-jags.sourceforge.net.

R DEVELOPMENT CORE TEAaM. 2008. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical
Computing. www.r-project.org.

ScoLLNIK, D. P. M. 2001. Actuarial Modeling with MCMC and BUGS. North American Actuarial Journal 5(2): 96-124.

SPIEGELHALTER, D. J., A. THOMAS, AND N. G. BEsT. 2003. WinBUGS Version 1.4 User Manual. Cambridge: MRC Biostatistics Unit.

TaoMmas, A., B. O’Hara, U. LIGGES, AND S. STURTZ. 2006. Making BUGS Open. R News 6(1): 12-17. http://cran.r-project.org/doc/
Rnews.

Discussions on this paper can be submitted until April 1, 2009. The authors reserve the right to reply to any
discussion. Please see the Submission Guidelines for Authors on the inside back cover for instructions on the
submission of discussions.

